1 // Written in the D programming language.
2 
3 /** This module contains the $(LREF Complex) type, which is used to represent
4     complex numbers, along with related mathematical operations and functions.
5 
6     $(LREF Complex) will eventually
7     $(DDLINK deprecate, Deprecated Features, replace)
8     the built-in types `cfloat`, `cdouble`, `creal`, `ifloat`,
9     `idouble`, and `ireal`.
10 
11     Macros:
12         TABLE_SV = <table border="1" cellpadding="4" cellspacing="0">
13                 <caption>Special Values</caption>
14                 $0</table>
15         PLUSMN = &plusmn;
16         NAN = $(RED NAN)
17         INFIN = &infin;
18         PI = &pi;
19 
20     Authors:    Lars Tandle Kyllingstad, Don Clugston
21     Copyright:  Copyright (c) 2010, Lars T. Kyllingstad.
22     License:    $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0)
23     Source:     $(PHOBOSSRC std/complex.d)
24 */
25 module std.complex;
26 
27 import std.traits;
28 
29 /** Helper function that returns a complex number with the specified
30     real and imaginary parts.
31 
32     Params:
33         R = (template parameter) type of real part of complex number
34         I = (template parameter) type of imaginary part of complex number
35 
36         re = real part of complex number to be constructed
37         im = (optional) imaginary part of complex number, 0 if omitted.
38 
39     Returns:
40         `Complex` instance with real and imaginary parts set
41         to the values provided as input.  If neither `re` nor
42         `im` are floating-point numbers, the return type will
43         be `Complex!double`.  Otherwise, the return type is
44         deduced using $(D std.traits.CommonType!(R, I)).
45 */
46 auto complex(R)(const R re)  @safe pure nothrow @nogc
47 if (is(R : double))
48 {
49     static if (isFloatingPoint!R)
50         return Complex!R(re, 0);
51     else
52         return Complex!double(re, 0);
53 }
54 
55 /// ditto
56 auto complex(R, I)(const R re, const I im)  @safe pure nothrow @nogc
57 if (is(R : double) && is(I : double))
58 {
59     static if (isFloatingPoint!R || isFloatingPoint!I)
60         return Complex!(CommonType!(R, I))(re, im);
61     else
62         return Complex!double(re, im);
63 }
64 
65 ///
66 @safe pure nothrow unittest
67 {
68     auto a = complex(1.0);
69     static assert(is(typeof(a) == Complex!double));
70     assert(a.re == 1.0);
71     assert(a.im == 0.0);
72 
73     auto b = complex(2.0L);
74     static assert(is(typeof(b) == Complex!real));
75     assert(b.re == 2.0L);
76     assert(b.im == 0.0L);
77 
78     auto c = complex(1.0, 2.0);
79     static assert(is(typeof(c) == Complex!double));
80     assert(c.re == 1.0);
81     assert(c.im == 2.0);
82 
83     auto d = complex(3.0, 4.0L);
84     static assert(is(typeof(d) == Complex!real));
85     assert(d.re == 3.0);
86     assert(d.im == 4.0L);
87 
88     auto e = complex(1);
89     static assert(is(typeof(e) == Complex!double));
90     assert(e.re == 1);
91     assert(e.im == 0);
92 
93     auto f = complex(1L, 2);
94     static assert(is(typeof(f) == Complex!double));
95     assert(f.re == 1L);
96     assert(f.im == 2);
97 
98     auto g = complex(3, 4.0L);
99     static assert(is(typeof(g) == Complex!real));
100     assert(g.re == 3);
101     assert(g.im == 4.0L);
102 }
103 
104 
105 /** A complex number parametrised by a type `T`, which must be either
106     `float`, `double` or `real`.
107 */
108 struct Complex(T)
109 if (isFloatingPoint!T)
110 {
111     import std.format.spec : FormatSpec;
112     import std.range.primitives : isOutputRange;
113 
114     /** The real part of the number. */
115     T re;
116 
117     /** The imaginary part of the number. */
118     T im;
119 
120     /** Converts the complex number to a string representation.
121 
122     The second form of this function is usually not called directly;
123     instead, it is used via $(REF format, std,string), as shown in the examples
124     below.  Supported format characters are 'e', 'f', 'g', 'a', and 's'.
125 
126     See the $(MREF std, format) and $(REF format, std,string)
127     documentation for more information.
128     */
129     string toString() const @safe /* TODO: pure nothrow */
130     {
131         import std.exception : assumeUnique;
132         char[] buf;
133         buf.reserve(100);
134         auto fmt = FormatSpec!char("%s");
135         toString((const(char)[] s) { buf ~= s; }, fmt);
136         static trustedAssumeUnique(T)(T t) @trusted { return assumeUnique(t); }
137         return trustedAssumeUnique(buf);
138     }
139 
140     static if (is(T == double))
141     ///
142     @safe unittest
143     {
144         auto c = complex(1.2, 3.4);
145 
146         // Vanilla toString formatting:
147         assert(c.toString() == "1.2+3.4i");
148 
149         // Formatting with std.string.format specs: the precision and width
150         // specifiers apply to both the real and imaginary parts of the
151         // complex number.
152         import std.format : format;
153         assert(format("%.2f", c)  == "1.20+3.40i");
154         assert(format("%4.1f", c) == " 1.2+ 3.4i");
155     }
156 
157     /// ditto
158     void toString(Writer, Char)(scope Writer w, scope const ref FormatSpec!Char formatSpec) const
159     if (isOutputRange!(Writer, const(Char)[]))
160     {
161         import std.format.write : formatValue;
162         import std.math.traits : signbit;
163         import std.range.primitives : put;
164         formatValue(w, re, formatSpec);
165         if (signbit(im) == 0)
166            put(w, "+");
167         formatValue(w, im, formatSpec);
168         put(w, "i");
169     }
170 
171 @safe pure nothrow @nogc:
172 
173     /** Construct a complex number with the specified real and
174     imaginary parts. In the case where a single argument is passed
175     that is not complex, the imaginary part of the result will be
176     zero.
177     */
178     this(R : T)(Complex!R z)
179     {
180         re = z.re;
181         im = z.im;
182     }
183 
184     /// ditto
185     this(Rx : T, Ry : T)(const Rx x, const Ry y)
186     {
187         re = x;
188         im = y;
189     }
190 
191     /// ditto
192     this(R : T)(const R r)
193     {
194         re = r;
195         im = 0;
196     }
197 
198     // ASSIGNMENT OPERATORS
199 
200     // this = complex
201     ref Complex opAssign(R : T)(Complex!R z)
202     {
203         re = z.re;
204         im = z.im;
205         return this;
206     }
207 
208     // this = numeric
209     ref Complex opAssign(R : T)(const R r)
210     {
211         re = r;
212         im = 0;
213         return this;
214     }
215 
216     // COMPARISON OPERATORS
217 
218     // this == complex
219     bool opEquals(R : T)(Complex!R z) const
220     {
221         return re == z.re && im == z.im;
222     }
223 
224     // this == numeric
225     bool opEquals(R : T)(const R r) const
226     {
227         return re == r && im == 0;
228     }
229 
230     // UNARY OPERATORS
231 
232     // +complex
233     Complex opUnary(string op)() const
234     if (op == "+")
235     {
236         return this;
237     }
238 
239     // -complex
240     Complex opUnary(string op)() const
241     if (op == "-")
242     {
243         return Complex(-re, -im);
244     }
245 
246     // BINARY OPERATORS
247 
248     // complex op complex
249     Complex!(CommonType!(T,R)) opBinary(string op, R)(Complex!R z) const
250     {
251         alias C = typeof(return);
252         auto w = C(this.re, this.im);
253         return w.opOpAssign!(op)(z);
254     }
255 
256     // complex op numeric
257     Complex!(CommonType!(T,R)) opBinary(string op, R)(const R r) const
258     if (isNumeric!R)
259     {
260         alias C = typeof(return);
261         auto w = C(this.re, this.im);
262         return w.opOpAssign!(op)(r);
263     }
264 
265     // numeric + complex,  numeric * complex
266     Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(const R r) const
267     if ((op == "+" || op == "*") && (isNumeric!R))
268     {
269         return opBinary!(op)(r);
270     }
271 
272     // numeric - complex
273     Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(const R r) const
274     if (op == "-" && isNumeric!R)
275     {
276         return Complex(r - re, -im);
277     }
278 
279     // numeric / complex
280     Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(const R r) const
281     if (op == "/" && isNumeric!R)
282     {
283         version (FastMath)
284         {
285             // Compute norm(this)
286             immutable norm = re * re + im * im;
287             // Compute r * conj(this)
288             immutable prod_re = r * re;
289             immutable prod_im = r * -im;
290             // Divide the product by the norm
291             typeof(return) w = void;
292             w.re = prod_re / norm;
293             w.im = prod_im / norm;
294             return w;
295         }
296         else
297         {
298             import core.math : fabs;
299             typeof(return) w = void;
300             if (fabs(re) < fabs(im))
301             {
302                 immutable ratio = re/im;
303                 immutable rdivd = r/(re*ratio + im);
304 
305                 w.re = rdivd*ratio;
306                 w.im = -rdivd;
307             }
308             else
309             {
310                 immutable ratio = im/re;
311                 immutable rdivd = r/(re + im*ratio);
312 
313                 w.re = rdivd;
314                 w.im = -rdivd*ratio;
315             }
316 
317             return w;
318         }
319     }
320 
321     // numeric ^^ complex
322     Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(const R lhs) const
323     if (op == "^^" && isNumeric!R)
324     {
325         import core.math : cos, sin;
326         import std.math.exponential : exp, log;
327         import std.math.constants : PI;
328         Unqual!(CommonType!(T, R)) ab = void, ar = void;
329 
330         if (lhs >= 0)
331         {
332             // r = lhs
333             // theta = 0
334             ab = lhs ^^ this.re;
335             ar = log(lhs) * this.im;
336         }
337         else
338         {
339             // r = -lhs
340             // theta = PI
341             ab = (-lhs) ^^ this.re * exp(-PI * this.im);
342             ar = PI * this.re + log(-lhs) * this.im;
343         }
344 
345         return typeof(return)(ab * cos(ar), ab * sin(ar));
346     }
347 
348     // OP-ASSIGN OPERATORS
349 
350     // complex += complex,  complex -= complex
351     ref Complex opOpAssign(string op, C)(const C z)
352     if ((op == "+" || op == "-") && is(C R == Complex!R))
353     {
354         mixin ("re "~op~"= z.re;");
355         mixin ("im "~op~"= z.im;");
356         return this;
357     }
358 
359     // complex *= complex
360     ref Complex opOpAssign(string op, C)(const C z)
361     if (op == "*" && is(C R == Complex!R))
362     {
363         auto temp = re*z.re - im*z.im;
364         im = im*z.re + re*z.im;
365         re = temp;
366         return this;
367     }
368 
369     // complex /= complex
370     ref Complex opOpAssign(string op, C)(const C z)
371     if (op == "/" && is(C R == Complex!R))
372     {
373         version (FastMath)
374         {
375             // Compute norm(z)
376             immutable norm = z.re * z.re + z.im * z.im;
377             // Compute this * conj(z)
378             immutable prod_re = re * z.re - im * -z.im;
379             immutable prod_im = im * z.re + re * -z.im;
380             // Divide the product by the norm
381             re = prod_re / norm;
382             im = prod_im / norm;
383             return this;
384         }
385         else
386         {
387             import core.math : fabs;
388             if (fabs(z.re) < fabs(z.im))
389             {
390                 immutable ratio = z.re/z.im;
391                 immutable denom = z.re*ratio + z.im;
392 
393                 immutable temp = (re*ratio + im)/denom;
394                 im = (im*ratio - re)/denom;
395                 re = temp;
396             }
397             else
398             {
399                 immutable ratio = z.im/z.re;
400                 immutable denom = z.re + z.im*ratio;
401 
402                 immutable temp = (re + im*ratio)/denom;
403                 im = (im - re*ratio)/denom;
404                 re = temp;
405             }
406             return this;
407         }
408     }
409 
410     // complex ^^= complex
411     ref Complex opOpAssign(string op, C)(const C z)
412     if (op == "^^" && is(C R == Complex!R))
413     {
414         import core.math : cos, sin;
415         import std.math.exponential : exp, log;
416         immutable r = abs(this);
417         immutable t = arg(this);
418         immutable ab = r^^z.re * exp(-t*z.im);
419         immutable ar = t*z.re + log(r)*z.im;
420 
421         re = ab*cos(ar);
422         im = ab*sin(ar);
423         return this;
424     }
425 
426     // complex += numeric,  complex -= numeric
427     ref Complex opOpAssign(string op, U : T)(const U a)
428     if (op == "+" || op == "-")
429     {
430         mixin ("re "~op~"= a;");
431         return this;
432     }
433 
434     // complex *= numeric,  complex /= numeric
435     ref Complex opOpAssign(string op, U : T)(const U a)
436     if (op == "*" || op == "/")
437     {
438         mixin ("re "~op~"= a;");
439         mixin ("im "~op~"= a;");
440         return this;
441     }
442 
443     // complex ^^= real
444     ref Complex opOpAssign(string op, R)(const R r)
445     if (op == "^^" && isFloatingPoint!R)
446     {
447         import core.math : cos, sin;
448         immutable ab = abs(this)^^r;
449         immutable ar = arg(this)*r;
450         re = ab*cos(ar);
451         im = ab*sin(ar);
452         return this;
453     }
454 
455     // complex ^^= int
456     ref Complex opOpAssign(string op, U)(const U i)
457     if (op == "^^" && isIntegral!U)
458     {
459         switch (i)
460         {
461         case 0:
462             re = 1.0;
463             im = 0.0;
464             break;
465         case 1:
466             // identity; do nothing
467             break;
468         case 2:
469             this *= this;
470             break;
471         case 3:
472             auto z = this;
473             this *= z;
474             this *= z;
475             break;
476         default:
477             this ^^= cast(real) i;
478         }
479         return this;
480     }
481 
482     /** Returns a complex number instance that correponds in size and in ABI
483         to the associated C compiler's `_Complex` type.
484      */
485     auto toNative()
486     {
487         import core.stdc.config : c_complex_float, c_complex_double, c_complex_real;
488         static if (is(T == float))
489             return c_complex_float(re, im);
490         else static if (is(T == double))
491             return c_complex_double(re, im);
492         else
493             return c_complex_real(re, im);
494     }
495 }
496 
497 @safe pure nothrow unittest
498 {
499     import std.complex;
500     static import core.math;
501     import std.math;
502 
503     enum EPS = double.epsilon;
504     auto c1 = complex(1.0, 1.0);
505 
506     // Check unary operations.
507     auto c2 = Complex!double(0.5, 2.0);
508 
509     assert(c2 == +c2);
510 
511     assert((-c2).re == -(c2.re));
512     assert((-c2).im == -(c2.im));
513     assert(c2 == -(-c2));
514 
515     // Check complex-complex operations.
516     auto cpc = c1 + c2;
517     assert(cpc.re == c1.re + c2.re);
518     assert(cpc.im == c1.im + c2.im);
519 
520     auto cmc = c1 - c2;
521     assert(cmc.re == c1.re - c2.re);
522     assert(cmc.im == c1.im - c2.im);
523 
524     auto ctc = c1 * c2;
525     assert(isClose(abs(ctc), abs(c1)*abs(c2), EPS));
526     assert(isClose(arg(ctc), arg(c1)+arg(c2), EPS));
527 
528     auto cdc = c1 / c2;
529     assert(isClose(abs(cdc), abs(c1)/abs(c2), EPS));
530     assert(isClose(arg(cdc), arg(c1)-arg(c2), EPS));
531 
532     auto cec = c1^^c2;
533     assert(isClose(cec.re, 0.1152413197994, 1e-12));
534     assert(isClose(cec.im, 0.2187079045274, 1e-12));
535 
536     // Check complex-real operations.
537     double a = 123.456;
538 
539     auto cpr = c1 + a;
540     assert(cpr.re == c1.re + a);
541     assert(cpr.im == c1.im);
542 
543     auto cmr = c1 - a;
544     assert(cmr.re == c1.re - a);
545     assert(cmr.im == c1.im);
546 
547     auto ctr = c1 * a;
548     assert(ctr.re == c1.re*a);
549     assert(ctr.im == c1.im*a);
550 
551     auto cdr = c1 / a;
552     assert(isClose(abs(cdr), abs(c1)/a, EPS));
553     assert(isClose(arg(cdr), arg(c1), EPS));
554 
555     auto cer = c1^^3.0;
556     assert(isClose(abs(cer), abs(c1)^^3, EPS));
557     assert(isClose(arg(cer), arg(c1)*3, EPS));
558 
559     auto rpc = a + c1;
560     assert(rpc == cpr);
561 
562     auto rmc = a - c1;
563     assert(rmc.re == a-c1.re);
564     assert(rmc.im == -c1.im);
565 
566     auto rtc = a * c1;
567     assert(rtc == ctr);
568 
569     auto rdc = a / c1;
570     assert(isClose(abs(rdc), a/abs(c1), EPS));
571     assert(isClose(arg(rdc), -arg(c1), EPS));
572 
573     rdc = a / c2;
574     assert(isClose(abs(rdc), a/abs(c2), EPS));
575     assert(isClose(arg(rdc), -arg(c2), EPS));
576 
577     auto rec1a = 1.0 ^^ c1;
578     assert(rec1a.re == 1.0);
579     assert(rec1a.im == 0.0);
580 
581     auto rec2a = 1.0 ^^ c2;
582     assert(rec2a.re == 1.0);
583     assert(rec2a.im == 0.0);
584 
585     auto rec1b = (-1.0) ^^ c1;
586     assert(isClose(abs(rec1b), std.math.exp(-PI * c1.im), EPS));
587     auto arg1b = arg(rec1b);
588     /* The argument _should_ be PI, but floating-point rounding error
589      * means that in fact the imaginary part is very slightly negative.
590      */
591     assert(isClose(arg1b, PI, EPS) || isClose(arg1b, -PI, EPS));
592 
593     auto rec2b = (-1.0) ^^ c2;
594     assert(isClose(abs(rec2b), std.math.exp(-2 * PI), EPS));
595     assert(isClose(arg(rec2b), PI_2, EPS));
596 
597     auto rec3a = 0.79 ^^ complex(6.8, 5.7);
598     auto rec3b = complex(0.79, 0.0) ^^ complex(6.8, 5.7);
599     assert(isClose(rec3a.re, rec3b.re, 1e-14));
600     assert(isClose(rec3a.im, rec3b.im, 1e-14));
601 
602     auto rec4a = (-0.79) ^^ complex(6.8, 5.7);
603     auto rec4b = complex(-0.79, 0.0) ^^ complex(6.8, 5.7);
604     assert(isClose(rec4a.re, rec4b.re, 1e-14));
605     assert(isClose(rec4a.im, rec4b.im, 1e-14));
606 
607     auto rer = a ^^ complex(2.0, 0.0);
608     auto rcheck = a ^^ 2.0;
609     static assert(is(typeof(rcheck) == double));
610     assert(feqrel(rer.re, rcheck) == double.mant_dig);
611     assert(isIdentical(rer.re, rcheck));
612     assert(rer.im == 0.0);
613 
614     auto rer2 = (-a) ^^ complex(2.0, 0.0);
615     rcheck = (-a) ^^ 2.0;
616     assert(feqrel(rer2.re, rcheck) == double.mant_dig);
617     assert(isIdentical(rer2.re, rcheck));
618     assert(isClose(rer2.im, 0.0, 0.0, 1e-10));
619 
620     auto rer3 = (-a) ^^ complex(-2.0, 0.0);
621     rcheck = (-a) ^^ (-2.0);
622     assert(feqrel(rer3.re, rcheck) == double.mant_dig);
623     assert(isIdentical(rer3.re, rcheck));
624     assert(isClose(rer3.im, 0.0, 0.0, EPS));
625 
626     auto rer4 = a ^^ complex(-2.0, 0.0);
627     rcheck = a ^^ (-2.0);
628     assert(feqrel(rer4.re, rcheck) == double.mant_dig);
629     assert(isIdentical(rer4.re, rcheck));
630     assert(rer4.im == 0.0);
631 
632     // Check Complex-int operations.
633     foreach (i; 0 .. 6)
634     {
635         auto cei = c1^^i;
636         assert(isClose(abs(cei), abs(c1)^^i, 1e-14));
637         // Use cos() here to deal with arguments that go outside
638         // the (-pi,pi] interval (only an issue for i>3).
639         assert(isClose(core.math.cos(arg(cei)), core.math.cos(arg(c1)*i), 1e-14));
640     }
641 
642     // Check operations between different complex types.
643     auto cf = Complex!float(1.0, 1.0);
644     auto cr = Complex!real(1.0, 1.0);
645     auto c1pcf = c1 + cf;
646     auto c1pcr = c1 + cr;
647     static assert(is(typeof(c1pcf) == Complex!double));
648     static assert(is(typeof(c1pcr) == Complex!real));
649     assert(c1pcf.re == c1pcr.re);
650     assert(c1pcf.im == c1pcr.im);
651 
652     auto c1c = c1;
653     auto c2c = c2;
654 
655     c1c /= c1;
656     assert(isClose(c1c.re, 1.0, EPS));
657     assert(isClose(c1c.im, 0.0, 0.0, EPS));
658 
659     c1c = c1;
660     c1c /= c2;
661     assert(isClose(c1c.re, 0.5882352941177, 1e-12));
662     assert(isClose(c1c.im, -0.3529411764706, 1e-12));
663 
664     c2c /= c1;
665     assert(isClose(c2c.re, 1.25, EPS));
666     assert(isClose(c2c.im, 0.75, EPS));
667 
668     c2c = c2;
669     c2c /= c2;
670     assert(isClose(c2c.re, 1.0, EPS));
671     assert(isClose(c2c.im, 0.0, 0.0, EPS));
672 }
673 
674 @safe pure nothrow unittest
675 {
676     // Initialization
677     Complex!double a = 1;
678     assert(a.re == 1 && a.im == 0);
679     Complex!double b = 1.0;
680     assert(b.re == 1.0 && b.im == 0);
681     Complex!double c = Complex!real(1.0, 2);
682     assert(c.re == 1.0 && c.im == 2);
683 }
684 
685 @safe pure nothrow unittest
686 {
687     // Assignments and comparisons
688     Complex!double z;
689 
690     z = 1;
691     assert(z == 1);
692     assert(z.re == 1.0  &&  z.im == 0.0);
693 
694     z = 2.0;
695     assert(z == 2.0);
696     assert(z.re == 2.0  &&  z.im == 0.0);
697 
698     z = 1.0L;
699     assert(z == 1.0L);
700     assert(z.re == 1.0  &&  z.im == 0.0);
701 
702     auto w = Complex!real(1.0, 1.0);
703     z = w;
704     assert(z == w);
705     assert(z.re == 1.0  &&  z.im == 1.0);
706 
707     auto c = Complex!float(2.0, 2.0);
708     z = c;
709     assert(z == c);
710     assert(z.re == 2.0  &&  z.im == 2.0);
711 }
712 
713 
714 /*  Makes Complex!(Complex!T) fold to Complex!T.
715 
716     The rationale for this is that just like the real line is a
717     subspace of the complex plane, the complex plane is a subspace
718     of itself.  Example of usage:
719     ---
720     Complex!T addI(T)(T x)
721     {
722         return x + Complex!T(0.0, 1.0);
723     }
724     ---
725     The above will work if T is both real and complex.
726 */
727 template Complex(T)
728 if (is(T R == Complex!R))
729 {
730     alias Complex = T;
731 }
732 
733 @safe pure nothrow unittest
734 {
735     static assert(is(Complex!(Complex!real) == Complex!real));
736 
737     Complex!T addI(T)(T x)
738     {
739         return x + Complex!T(0.0, 1.0);
740     }
741 
742     auto z1 = addI(1.0);
743     assert(z1.re == 1.0 && z1.im == 1.0);
744 
745     enum one = Complex!double(1.0, 0.0);
746     auto z2 = addI(one);
747     assert(z1 == z2);
748 }
749 
750 
751 /**
752    Params: z = A complex number.
753    Returns: The absolute value (or modulus) of `z`.
754 */
755 T abs(T)(Complex!T z) @safe pure nothrow @nogc
756 {
757     import std.math.algebraic : hypot;
758     return hypot(z.re, z.im);
759 }
760 
761 ///
762 @safe pure nothrow unittest
763 {
764     static import core.math;
765     assert(abs(complex(1.0)) == 1.0);
766     assert(abs(complex(0.0, 1.0)) == 1.0);
767     assert(abs(complex(1.0L, -2.0L)) == core.math.sqrt(5.0L));
768 }
769 
770 @safe pure nothrow @nogc unittest
771 {
772     static import core.math;
773     assert(abs(complex(0.0L, -3.2L)) == 3.2L);
774     assert(abs(complex(0.0L, 71.6L)) == 71.6L);
775     assert(abs(complex(-1.0L, 1.0L)) == core.math.sqrt(2.0L));
776 }
777 
778 @safe pure nothrow @nogc unittest
779 {
780     import std.meta : AliasSeq;
781     static foreach (T; AliasSeq!(float, double, real))
782     {{
783         static import std.math;
784         Complex!T a = complex(T(-12), T(3));
785         T b = std.math.hypot(a.re, a.im);
786         assert(std.math.isClose(abs(a), b));
787         assert(std.math.isClose(abs(-a), b));
788     }}
789 }
790 
791 /++
792    Params:
793     z = A complex number.
794     x = A real number.
795    Returns: The squared modulus of `z`.
796    For genericity, if called on a real number, returns its square.
797 +/
798 T sqAbs(T)(Complex!T z) @safe pure nothrow @nogc
799 {
800     return z.re*z.re + z.im*z.im;
801 }
802 
803 ///
804 @safe pure nothrow unittest
805 {
806     import std.math.operations : isClose;
807     assert(sqAbs(complex(0.0)) == 0.0);
808     assert(sqAbs(complex(1.0)) == 1.0);
809     assert(sqAbs(complex(0.0, 1.0)) == 1.0);
810     assert(isClose(sqAbs(complex(1.0L, -2.0L)), 5.0L));
811     assert(isClose(sqAbs(complex(-3.0L, 1.0L)), 10.0L));
812     assert(isClose(sqAbs(complex(1.0f,-1.0f)), 2.0f));
813 }
814 
815 /// ditto
816 T sqAbs(T)(const T x) @safe pure nothrow @nogc
817 if (isFloatingPoint!T)
818 {
819     return x*x;
820 }
821 
822 @safe pure nothrow unittest
823 {
824     import std.math.operations : isClose;
825     assert(sqAbs(0.0) == 0.0);
826     assert(sqAbs(-1.0) == 1.0);
827     assert(isClose(sqAbs(-3.0L), 9.0L));
828     assert(isClose(sqAbs(-5.0f), 25.0f));
829 }
830 
831 
832 /**
833  Params: z = A complex number.
834  Returns: The argument (or phase) of `z`.
835  */
836 T arg(T)(Complex!T z) @safe pure nothrow @nogc
837 {
838     import std.math.trigonometry : atan2;
839     return atan2(z.im, z.re);
840 }
841 
842 ///
843 @safe pure nothrow unittest
844 {
845     import std.math.constants : PI_2, PI_4;
846     assert(arg(complex(1.0)) == 0.0);
847     assert(arg(complex(0.0L, 1.0L)) == PI_2);
848     assert(arg(complex(1.0L, 1.0L)) == PI_4);
849 }
850 
851 
852 /**
853  * Extracts the norm of a complex number.
854  * Params:
855  *      z = A complex number
856  * Returns:
857  *      The squared magnitude of `z`.
858  */
859 T norm(T)(Complex!T z) @safe pure nothrow @nogc
860 {
861     return z.re * z.re + z.im * z.im;
862 }
863 
864 ///
865 @safe pure nothrow @nogc unittest
866 {
867     import std.math.operations : isClose;
868     import std.math.constants : PI;
869     assert(norm(complex(3.0, 4.0)) == 25.0);
870     assert(norm(fromPolar(5.0, 0.0)) == 25.0);
871     assert(isClose(norm(fromPolar(5.0L, PI / 6)), 25.0L));
872     assert(isClose(norm(fromPolar(5.0L, 13 * PI / 6)), 25.0L));
873 }
874 
875 
876 /**
877   Params: z = A complex number.
878   Returns: The complex conjugate of `z`.
879 */
880 Complex!T conj(T)(Complex!T z) @safe pure nothrow @nogc
881 {
882     return Complex!T(z.re, -z.im);
883 }
884 
885 ///
886 @safe pure nothrow unittest
887 {
888     assert(conj(complex(1.0)) == complex(1.0));
889     assert(conj(complex(1.0, 2.0)) == complex(1.0, -2.0));
890 }
891 
892 @safe pure nothrow @nogc unittest
893 {
894     import std.meta : AliasSeq;
895     static foreach (T; AliasSeq!(float, double, real))
896     {{
897          auto c = Complex!T(7, 3L);
898          assert(conj(c) == Complex!T(7, -3L));
899          auto z = Complex!T(0, -3.2L);
900          assert(conj(z) == -z);
901     }}
902 }
903 
904 /**
905  * Returns the projection of `z` onto the Riemann sphere.
906  * Params:
907  *      z = A complex number
908  * Returns:
909  *      The projection of `z` onto the Riemann sphere.
910  */
911 Complex!T proj(T)(Complex!T z)
912 {
913     static import std.math;
914 
915     if (std.math.isInfinity(z.re) || std.math.isInfinity(z.im))
916         return Complex!T(T.infinity, std.math.copysign(0.0, z.im));
917 
918     return z;
919 }
920 
921 ///
922 @safe pure nothrow unittest
923 {
924     assert(proj(complex(1.0)) == complex(1.0));
925     assert(proj(complex(double.infinity, 5.0)) == complex(double.infinity, 0.0));
926     assert(proj(complex(5.0, -double.infinity)) == complex(double.infinity, -0.0));
927 }
928 
929 
930 /**
931   Constructs a complex number given its absolute value and argument.
932   Params:
933     modulus = The modulus
934     argument = The argument
935   Returns: The complex number with the given modulus and argument.
936 */
937 Complex!(CommonType!(T, U)) fromPolar(T, U)(const T modulus, const U argument)
938     @safe pure nothrow @nogc
939 {
940     import core.math : sin, cos;
941     return Complex!(CommonType!(T,U))
942         (modulus*cos(argument), modulus*sin(argument));
943 }
944 
945 ///
946 @safe pure nothrow unittest
947 {
948     import core.math;
949     import std.math.operations : isClose;
950     import std.math.algebraic : sqrt;
951     import std.math.constants : PI_4;
952     auto z = fromPolar(core.math.sqrt(2.0L), PI_4);
953     assert(isClose(z.re, 1.0L));
954     assert(isClose(z.im, 1.0L));
955 }
956 
957 version (StdUnittest)
958 {
959     // Helper function for comparing two Complex numbers.
960     int ceqrel(T)(const Complex!T x, const Complex!T y) @safe pure nothrow @nogc
961     {
962         import std.math.operations : feqrel;
963         const r = feqrel(x.re, y.re);
964         const i = feqrel(x.im, y.im);
965         return r < i ? r : i;
966     }
967 }
968 
969 /**
970     Trigonometric functions on complex numbers.
971 
972     Params: z = A complex number.
973     Returns: The sine, cosine and tangent of `z`, respectively.
974 */
975 Complex!T sin(T)(Complex!T z)  @safe pure nothrow @nogc
976 {
977     auto cs = expi(z.re);
978     auto csh = coshisinh(z.im);
979     return typeof(return)(cs.im * csh.re, cs.re * csh.im);
980 }
981 
982 ///
983 @safe pure nothrow unittest
984 {
985     static import core.math;
986     assert(sin(complex(0.0)) == 0.0);
987     assert(sin(complex(2.0, 0)) == core.math.sin(2.0));
988 }
989 
990 @safe pure nothrow unittest
991 {
992     static import core.math;
993     assert(ceqrel(sin(complex(2.0L, 0)), complex(core.math.sin(2.0L))) >= real.mant_dig - 1);
994 }
995 
996 /// ditto
997 Complex!T cos(T)(Complex!T z)  @safe pure nothrow @nogc
998 {
999     auto cs = expi(z.re);
1000     auto csh = coshisinh(z.im);
1001     return typeof(return)(cs.re * csh.re, - cs.im * csh.im);
1002 }
1003 
1004 ///
1005 @safe pure nothrow unittest
1006 {
1007     static import core.math;
1008     static import std.math;
1009     assert(cos(complex(0.0)) == 1.0);
1010     assert(cos(complex(1.3, 0.0)) == core.math.cos(1.3));
1011     assert(cos(complex(0.0, 5.2)) == std.math.cosh(5.2));
1012 }
1013 
1014 @safe pure nothrow unittest
1015 {
1016     static import core.math;
1017     static import std.math;
1018     assert(ceqrel(cos(complex(0, 5.2L)), complex(std.math.cosh(5.2L), 0.0L)) >= real.mant_dig - 1);
1019     assert(ceqrel(cos(complex(1.3L)), complex(core.math.cos(1.3L))) >= real.mant_dig - 1);
1020 }
1021 
1022 /// ditto
1023 Complex!T tan(T)(Complex!T z) @safe pure nothrow @nogc
1024 {
1025     return sin(z) / cos(z);
1026 }
1027 
1028 ///
1029 @safe pure nothrow @nogc unittest
1030 {
1031     static import std.math;
1032 
1033     int ceqrel(T)(const Complex!T x, const Complex!T y) @safe pure nothrow @nogc
1034     {
1035         import std.math.operations : feqrel;
1036         const r = feqrel(x.re, y.re);
1037         const i = feqrel(x.im, y.im);
1038         return r < i ? r : i;
1039     }
1040     assert(ceqrel(tan(complex(1.0, 0.0)), complex(std.math.tan(1.0), 0.0)) >= double.mant_dig - 2);
1041     assert(ceqrel(tan(complex(0.0, 1.0)), complex(0.0, std.math.tanh(1.0))) >= double.mant_dig - 2);
1042 }
1043 
1044 /**
1045     Inverse trigonometric functions on complex numbers.
1046 
1047     Params: z = A complex number.
1048     Returns: The arcsine, arccosine and arctangent of `z`, respectively.
1049 */
1050 Complex!T asin(T)(Complex!T z)  @safe pure nothrow @nogc
1051 {
1052     auto ash = asinh(Complex!T(-z.im, z.re));
1053     return Complex!T(ash.im, -ash.re);
1054 }
1055 
1056 ///
1057 @safe pure nothrow unittest
1058 {
1059     import std.math.operations : isClose;
1060     import std.math.constants : PI;
1061     assert(asin(complex(0.0)) == 0.0);
1062     assert(isClose(asin(complex(0.5L)), PI / 6));
1063 }
1064 
1065 @safe pure nothrow unittest
1066 {
1067     import std.math.operations : isClose;
1068     import std.math.constants : PI;
1069     version (DigitalMars) {} else // Disabled because of https://issues.dlang.org/show_bug.cgi?id=21376
1070     assert(isClose(asin(complex(0.5f)), float(PI) / 6));
1071 }
1072 
1073 /// ditto
1074 Complex!T acos(T)(Complex!T z)  @safe pure nothrow @nogc
1075 {
1076     static import std.math;
1077     auto as = asin(z);
1078     return Complex!T(T(std.math.PI_2) - as.re, as.im);
1079 }
1080 
1081 ///
1082 @safe pure nothrow unittest
1083 {
1084     import std.math.operations : isClose;
1085     import std.math.constants : PI;
1086     import std.math.trigonometry : std_math_acos = acos;
1087     assert(acos(complex(0.0)) == std_math_acos(0.0));
1088     assert(isClose(acos(complex(0.5L)), PI / 3));
1089 }
1090 
1091 @safe pure nothrow unittest
1092 {
1093     import std.math.operations : isClose;
1094     import std.math.constants : PI;
1095     version (DigitalMars) {} else // Disabled because of https://issues.dlang.org/show_bug.cgi?id=21376
1096     assert(isClose(acos(complex(0.5f)), float(PI) / 3));
1097 }
1098 
1099 /// ditto
1100 Complex!T atan(T)(Complex!T z) @safe pure nothrow @nogc
1101 {
1102     static import std.math;
1103     const T re2 = z.re * z.re;
1104     const T x = 1 - re2 - z.im * z.im;
1105 
1106     T num = z.im + 1;
1107     T den = z.im - 1;
1108 
1109     num = re2 + num * num;
1110     den = re2 + den * den;
1111 
1112     return Complex!T(T(0.5) * std.math.atan2(2 * z.re, x),
1113                      T(0.25) * std.math.log(num / den));
1114 }
1115 
1116 ///
1117 @safe pure nothrow @nogc unittest
1118 {
1119     import std.math.operations : isClose;
1120     import std.math.constants : PI;
1121     assert(atan(complex(0.0)) == 0.0);
1122     assert(isClose(atan(sqrt(complex(3.0L))), PI / 3));
1123     assert(isClose(atan(sqrt(complex(3.0f))), float(PI) / 3));
1124 }
1125 
1126 /**
1127     Hyperbolic trigonometric functions on complex numbers.
1128 
1129     Params: z = A complex number.
1130     Returns: The hyperbolic sine, cosine and tangent of `z`, respectively.
1131 */
1132 Complex!T sinh(T)(Complex!T z)  @safe pure nothrow @nogc
1133 {
1134     static import core.math, std.math;
1135     return Complex!T(std.math.sinh(z.re) * core.math.cos(z.im),
1136                      std.math.cosh(z.re) * core.math.sin(z.im));
1137 }
1138 
1139 ///
1140 @safe pure nothrow unittest
1141 {
1142     static import std.math;
1143     assert(sinh(complex(0.0)) == 0.0);
1144     assert(sinh(complex(1.0L)) == std.math.sinh(1.0L));
1145     assert(sinh(complex(1.0f)) == std.math.sinh(1.0f));
1146 }
1147 
1148 /// ditto
1149 Complex!T cosh(T)(Complex!T z)  @safe pure nothrow @nogc
1150 {
1151     static import core.math, std.math;
1152     return Complex!T(std.math.cosh(z.re) * core.math.cos(z.im),
1153                      std.math.sinh(z.re) * core.math.sin(z.im));
1154 }
1155 
1156 ///
1157 @safe pure nothrow unittest
1158 {
1159     static import std.math;
1160     assert(cosh(complex(0.0)) == 1.0);
1161     assert(cosh(complex(1.0L)) == std.math.cosh(1.0L));
1162     assert(cosh(complex(1.0f)) == std.math.cosh(1.0f));
1163 }
1164 
1165 /// ditto
1166 Complex!T tanh(T)(Complex!T z) @safe pure nothrow @nogc
1167 {
1168     return sinh(z) / cosh(z);
1169 }
1170 
1171 ///
1172 @safe pure nothrow @nogc unittest
1173 {
1174     import std.math.operations : isClose;
1175     import std.math.trigonometry : std_math_tanh = tanh;
1176     assert(tanh(complex(0.0)) == 0.0);
1177     assert(isClose(tanh(complex(1.0L)), std_math_tanh(1.0L)));
1178     assert(isClose(tanh(complex(1.0f)), std_math_tanh(1.0f)));
1179 }
1180 
1181 /**
1182     Inverse hyperbolic trigonometric functions on complex numbers.
1183 
1184     Params: z = A complex number.
1185     Returns: The hyperbolic arcsine, arccosine and arctangent of `z`, respectively.
1186 */
1187 Complex!T asinh(T)(Complex!T z)  @safe pure nothrow @nogc
1188 {
1189     auto t = Complex!T((z.re - z.im) * (z.re + z.im) + 1, 2 * z.re * z.im);
1190     return log(sqrt(t) + z);
1191 }
1192 
1193 ///
1194 @safe pure nothrow unittest
1195 {
1196     import std.math.operations : isClose;
1197     import std.math.trigonometry : std_math_asinh = asinh;
1198     assert(asinh(complex(0.0)) == 0.0);
1199     assert(isClose(asinh(complex(1.0L)), std_math_asinh(1.0L)));
1200     assert(isClose(asinh(complex(1.0f)), std_math_asinh(1.0f)));
1201 }
1202 
1203 /// ditto
1204 Complex!T acosh(T)(Complex!T z)  @safe pure nothrow @nogc
1205 {
1206     return 2 * log(sqrt(T(0.5) * (z + 1)) + sqrt(T(0.5) * (z - 1)));
1207 }
1208 
1209 ///
1210 @safe pure nothrow unittest
1211 {
1212     import std.math.operations : isClose;
1213     import std.math.trigonometry : std_math_acosh = acosh;
1214     assert(acosh(complex(1.0)) == 0.0);
1215     assert(isClose(acosh(complex(3.0L)), std_math_acosh(3.0L)));
1216     assert(isClose(acosh(complex(3.0f)), std_math_acosh(3.0f)));
1217 }
1218 
1219 /// ditto
1220 Complex!T atanh(T)(Complex!T z) @safe pure nothrow @nogc
1221 {
1222     static import std.math;
1223     const T im2 = z.im * z.im;
1224     const T x = 1 - im2 - z.re * z.re;
1225 
1226     T num = 1 + z.re;
1227     T den = 1 - z.re;
1228 
1229     num = im2 + num * num;
1230     den = im2 + den * den;
1231 
1232     return Complex!T(T(0.25) * (std.math.log(num) - std.math.log(den)),
1233                      T(0.5) * std.math.atan2(2 * z.im, x));
1234 }
1235 
1236 ///
1237 @safe pure nothrow @nogc unittest
1238 {
1239     import std.math.operations : isClose;
1240     import std.math.trigonometry : std_math_atanh = atanh;
1241     assert(atanh(complex(0.0)) == 0.0);
1242     assert(isClose(atanh(complex(0.5L)), std_math_atanh(0.5L)));
1243     assert(isClose(atanh(complex(0.5f)), std_math_atanh(0.5f)));
1244 }
1245 
1246 /**
1247     Params: y = A real number.
1248     Returns: The value of cos(y) + i sin(y).
1249 
1250     Note:
1251     `expi` is included here for convenience and for easy migration of code.
1252 */
1253 Complex!real expi(real y)  @trusted pure nothrow @nogc
1254 {
1255     import core.math : cos, sin;
1256     return Complex!real(cos(y), sin(y));
1257 }
1258 
1259 ///
1260 @safe pure nothrow unittest
1261 {
1262     import core.math : cos, sin;
1263     assert(expi(0.0L) == 1.0L);
1264     assert(expi(1.3e5L) == complex(cos(1.3e5L), sin(1.3e5L)));
1265 }
1266 
1267 /**
1268     Params: y = A real number.
1269     Returns: The value of cosh(y) + i sinh(y)
1270 
1271     Note:
1272     `coshisinh` is included here for convenience and for easy migration of code.
1273 */
1274 Complex!real coshisinh(real y) @safe pure nothrow @nogc
1275 {
1276     static import core.math;
1277     static import std.math;
1278     if (core.math.fabs(y) <= 0.5)
1279         return Complex!real(std.math.cosh(y), std.math.sinh(y));
1280     else
1281     {
1282         auto z = std.math.exp(y);
1283         auto zi = 0.5 / z;
1284         z = 0.5 * z;
1285         return Complex!real(z + zi, z - zi);
1286     }
1287 }
1288 
1289 ///
1290 @safe pure nothrow @nogc unittest
1291 {
1292     import std.math.trigonometry : cosh, sinh;
1293     assert(coshisinh(3.0L) == complex(cosh(3.0L), sinh(3.0L)));
1294 }
1295 
1296 /**
1297     Params: z = A complex number.
1298     Returns: The square root of `z`.
1299 */
1300 Complex!T sqrt(T)(Complex!T z)  @safe pure nothrow @nogc
1301 {
1302     static import core.math;
1303     typeof(return) c;
1304     real x,y,w,r;
1305 
1306     if (z == 0)
1307     {
1308         c = typeof(return)(0, 0);
1309     }
1310     else
1311     {
1312         real z_re = z.re;
1313         real z_im = z.im;
1314 
1315         x = core.math.fabs(z_re);
1316         y = core.math.fabs(z_im);
1317         if (x >= y)
1318         {
1319             r = y / x;
1320             w = core.math.sqrt(x)
1321                 * core.math.sqrt(0.5 * (1 + core.math.sqrt(1 + r * r)));
1322         }
1323         else
1324         {
1325             r = x / y;
1326             w = core.math.sqrt(y)
1327                 * core.math.sqrt(0.5 * (r + core.math.sqrt(1 + r * r)));
1328         }
1329 
1330         if (z_re >= 0)
1331         {
1332             c = typeof(return)(w, z_im / (w + w));
1333         }
1334         else
1335         {
1336             if (z_im < 0)
1337                 w = -w;
1338             c = typeof(return)(z_im / (w + w), w);
1339         }
1340     }
1341     return c;
1342 }
1343 
1344 ///
1345 @safe pure nothrow unittest
1346 {
1347     static import core.math;
1348     assert(sqrt(complex(0.0)) == 0.0);
1349     assert(sqrt(complex(1.0L, 0)) == core.math.sqrt(1.0L));
1350     assert(sqrt(complex(-1.0L, 0)) == complex(0, 1.0L));
1351     assert(sqrt(complex(-8.0, -6.0)) == complex(1.0, -3.0));
1352 }
1353 
1354 @safe pure nothrow unittest
1355 {
1356     import std.math.operations : isClose;
1357 
1358     auto c1 = complex(1.0, 1.0);
1359     auto c2 = Complex!double(0.5, 2.0);
1360 
1361     auto c1s = sqrt(c1);
1362     assert(isClose(c1s.re, 1.09868411347));
1363     assert(isClose(c1s.im, 0.455089860562));
1364 
1365     auto c2s = sqrt(c2);
1366     assert(isClose(c2s.re, 1.13171392428));
1367     assert(isClose(c2s.im, 0.883615530876));
1368 }
1369 
1370 // support %f formatting of complex numbers
1371 // https://issues.dlang.org/show_bug.cgi?id=10881
1372 @safe unittest
1373 {
1374     import std.format : format;
1375 
1376     auto x = complex(1.2, 3.4);
1377     assert(format("%.2f", x) == "1.20+3.40i");
1378 
1379     auto y = complex(1.2, -3.4);
1380     assert(format("%.2f", y) == "1.20-3.40i");
1381 }
1382 
1383 @safe unittest
1384 {
1385     // Test wide string formatting
1386     import std.format.write : formattedWrite;
1387     wstring wformat(T)(string format, Complex!T c)
1388     {
1389         import std.array : appender;
1390         auto w = appender!wstring();
1391         auto n = formattedWrite(w, format, c);
1392         return w.data;
1393     }
1394 
1395     auto x = complex(1.2, 3.4);
1396     assert(wformat("%.2f", x) == "1.20+3.40i"w);
1397 }
1398 
1399 @safe unittest
1400 {
1401     // Test ease of use (vanilla toString() should be supported)
1402     assert(complex(1.2, 3.4).toString() == "1.2+3.4i");
1403 }
1404 
1405 @safe pure nothrow @nogc unittest
1406 {
1407     auto c = complex(3.0L, 4.0L);
1408     c = sqrt(c);
1409     assert(c.re == 2.0L);
1410     assert(c.im == 1.0L);
1411 }
1412 
1413 /**
1414  * Calculates e$(SUPERSCRIPT x).
1415  * Params:
1416  *      x = A complex number
1417  * Returns:
1418  *      The complex base e exponential of `x`
1419  *
1420  *      $(TABLE_SV
1421  *      $(TR $(TH x)                           $(TH exp(x)))
1422  *      $(TR $(TD ($(PLUSMN)0, +0))            $(TD (1, +0)))
1423  *      $(TR $(TD (any, +$(INFIN)))            $(TD ($(NAN), $(NAN))))
1424  *      $(TR $(TD (any, $(NAN))                $(TD ($(NAN), $(NAN)))))
1425  *      $(TR $(TD (+$(INFIN), +0))             $(TD (+$(INFIN), +0)))
1426  *      $(TR $(TD (-$(INFIN), any))            $(TD ($(PLUSMN)0, cis(x.im))))
1427  *      $(TR $(TD (+$(INFIN), any))            $(TD ($(PLUSMN)$(INFIN), cis(x.im))))
1428  *      $(TR $(TD (-$(INFIN), +$(INFIN)))      $(TD ($(PLUSMN)0, $(PLUSMN)0)))
1429  *      $(TR $(TD (+$(INFIN), +$(INFIN)))      $(TD ($(PLUSMN)$(INFIN), $(NAN))))
1430  *      $(TR $(TD (-$(INFIN), $(NAN)))         $(TD ($(PLUSMN)0, $(PLUSMN)0)))
1431  *      $(TR $(TD (+$(INFIN), $(NAN)))         $(TD ($(PLUSMN)$(INFIN), $(NAN))))
1432  *      $(TR $(TD ($(NAN), +0))                $(TD ($(NAN), +0)))
1433  *      $(TR $(TD ($(NAN), any))               $(TD ($(NAN), $(NAN))))
1434  *      $(TR $(TD ($(NAN), $(NAN)))            $(TD ($(NAN), $(NAN))))
1435  *      )
1436  */
1437 Complex!T exp(T)(Complex!T x) @trusted pure nothrow @nogc // TODO: @safe
1438 {
1439     static import std.math;
1440 
1441     // Handle special cases explicitly here, as fromPolar will otherwise
1442     // cause them to return Complex!T(NaN, NaN), or with the wrong sign.
1443     if (std.math.isInfinity(x.re))
1444     {
1445         if (std.math.isNaN(x.im))
1446         {
1447             if (std.math.signbit(x.re))
1448                 return Complex!T(0, std.math.copysign(0, x.im));
1449             else
1450                 return x;
1451         }
1452         if (std.math.isInfinity(x.im))
1453         {
1454             if (std.math.signbit(x.re))
1455                 return Complex!T(0, std.math.copysign(0, x.im));
1456             else
1457                 return Complex!T(T.infinity, -T.nan);
1458         }
1459         if (x.im == 0.0)
1460         {
1461             if (std.math.signbit(x.re))
1462                 return Complex!T(0.0);
1463             else
1464                 return Complex!T(T.infinity);
1465         }
1466     }
1467     if (std.math.isNaN(x.re))
1468     {
1469         if (std.math.isNaN(x.im) || std.math.isInfinity(x.im))
1470             return Complex!T(T.nan, T.nan);
1471         if (x.im == 0.0)
1472             return x;
1473     }
1474     if (x.re == 0.0)
1475     {
1476         if (std.math.isNaN(x.im) || std.math.isInfinity(x.im))
1477             return Complex!T(T.nan, T.nan);
1478         if (x.im == 0.0)
1479             return Complex!T(1.0, 0.0);
1480     }
1481 
1482     return fromPolar!(T, T)(std.math.exp(x.re), x.im);
1483 }
1484 
1485 ///
1486 @safe pure nothrow @nogc unittest
1487 {
1488     import std.math.operations : isClose;
1489     import std.math.constants : PI;
1490 
1491     assert(exp(complex(0.0, 0.0)) == complex(1.0, 0.0));
1492 
1493     auto a = complex(2.0, 1.0);
1494     assert(exp(conj(a)) == conj(exp(a)));
1495 
1496     auto b = exp(complex(0.0L, 1.0L) * PI);
1497     assert(isClose(b, -1.0L, 0.0, 1e-15));
1498 }
1499 
1500 @safe pure nothrow @nogc unittest
1501 {
1502     import std.math.traits : isNaN, isInfinity;
1503 
1504     auto a = exp(complex(0.0, double.infinity));
1505     assert(a.re.isNaN && a.im.isNaN);
1506     auto b = exp(complex(0.0, double.infinity));
1507     assert(b.re.isNaN && b.im.isNaN);
1508     auto c = exp(complex(0.0, double.nan));
1509     assert(c.re.isNaN && c.im.isNaN);
1510 
1511     auto d = exp(complex(+double.infinity, 0.0));
1512     assert(d == complex(double.infinity, 0.0));
1513     auto e = exp(complex(-double.infinity, 0.0));
1514     assert(e == complex(0.0));
1515     auto f = exp(complex(-double.infinity, 1.0));
1516     assert(f == complex(0.0));
1517     auto g = exp(complex(+double.infinity, 1.0));
1518     assert(g == complex(double.infinity, double.infinity));
1519     auto h = exp(complex(-double.infinity, +double.infinity));
1520     assert(h == complex(0.0));
1521     auto i = exp(complex(+double.infinity, +double.infinity));
1522     assert(i.re.isInfinity && i.im.isNaN);
1523     auto j = exp(complex(-double.infinity, double.nan));
1524     assert(j == complex(0.0));
1525     auto k = exp(complex(+double.infinity, double.nan));
1526     assert(k.re.isInfinity && k.im.isNaN);
1527 
1528     auto l = exp(complex(double.nan, 0));
1529     assert(l.re.isNaN && l.im == 0.0);
1530     auto m = exp(complex(double.nan, 1));
1531     assert(m.re.isNaN && m.im.isNaN);
1532     auto n = exp(complex(double.nan, double.nan));
1533     assert(n.re.isNaN && n.im.isNaN);
1534 }
1535 
1536 @safe pure nothrow @nogc unittest
1537 {
1538     import std.math.constants : PI;
1539     import std.math.operations : isClose;
1540 
1541     auto a = exp(complex(0.0, -PI));
1542     assert(isClose(a, -1.0, 0.0, 1e-15));
1543 
1544     auto b = exp(complex(0.0, -2.0 * PI / 3.0));
1545     assert(isClose(b, complex(-0.5L, -0.866025403784438646763L)));
1546 
1547     auto c = exp(complex(0.0, PI / 3.0));
1548     assert(isClose(c, complex(0.5L, 0.866025403784438646763L)));
1549 
1550     auto d = exp(complex(0.0, 2.0 * PI / 3.0));
1551     assert(isClose(d, complex(-0.5L, 0.866025403784438646763L)));
1552 
1553     auto e = exp(complex(0.0, PI));
1554     assert(isClose(e, -1.0, 0.0, 1e-15));
1555 }
1556 
1557 /**
1558  * Calculate the natural logarithm of x.
1559  * The branch cut is along the negative axis.
1560  * Params:
1561  *      x = A complex number
1562  * Returns:
1563  *      The complex natural logarithm of `x`
1564  *
1565  *      $(TABLE_SV
1566  *      $(TR $(TH x)                           $(TH log(x)))
1567  *      $(TR $(TD (-0, +0))                    $(TD (-$(INFIN), $(PI))))
1568  *      $(TR $(TD (+0, +0))                    $(TD (-$(INFIN), +0)))
1569  *      $(TR $(TD (any, +$(INFIN)))            $(TD (+$(INFIN), $(PI)/2)))
1570  *      $(TR $(TD (any, $(NAN)))               $(TD ($(NAN), $(NAN))))
1571  *      $(TR $(TD (-$(INFIN), any))            $(TD (+$(INFIN), $(PI))))
1572  *      $(TR $(TD (+$(INFIN), any))            $(TD (+$(INFIN), +0)))
1573  *      $(TR $(TD (-$(INFIN), +$(INFIN)))      $(TD (+$(INFIN), 3$(PI)/4)))
1574  *      $(TR $(TD (+$(INFIN), +$(INFIN)))      $(TD (+$(INFIN), $(PI)/4)))
1575  *      $(TR $(TD ($(PLUSMN)$(INFIN), $(NAN))) $(TD (+$(INFIN), $(NAN))))
1576  *      $(TR $(TD ($(NAN), any))               $(TD ($(NAN), $(NAN))))
1577  *      $(TR $(TD ($(NAN), +$(INFIN)))         $(TD (+$(INFIN), $(NAN))))
1578  *      $(TR $(TD ($(NAN), $(NAN)))            $(TD ($(NAN), $(NAN))))
1579  *      )
1580  */
1581 Complex!T log(T)(Complex!T x) @safe pure nothrow @nogc
1582 {
1583     static import std.math;
1584 
1585     // Handle special cases explicitly here for better accuracy.
1586     // The order here is important, so that the correct path is chosen.
1587     if (std.math.isNaN(x.re))
1588     {
1589         if (std.math.isInfinity(x.im))
1590             return Complex!T(T.infinity, T.nan);
1591         else
1592             return Complex!T(T.nan, T.nan);
1593     }
1594     if (std.math.isInfinity(x.re))
1595     {
1596         if (std.math.isNaN(x.im))
1597             return Complex!T(T.infinity, T.nan);
1598         else if (std.math.isInfinity(x.im))
1599         {
1600             if (std.math.signbit(x.re))
1601                 return Complex!T(T.infinity, std.math.copysign(3.0 * std.math.PI_4, x.im));
1602             else
1603                 return Complex!T(T.infinity, std.math.copysign(std.math.PI_4, x.im));
1604         }
1605         else
1606         {
1607             if (std.math.signbit(x.re))
1608                 return Complex!T(T.infinity, std.math.copysign(std.math.PI, x.im));
1609             else
1610                 return Complex!T(T.infinity, std.math.copysign(0.0, x.im));
1611         }
1612     }
1613     if (std.math.isNaN(x.im))
1614         return Complex!T(T.nan, T.nan);
1615     if (std.math.isInfinity(x.im))
1616         return Complex!T(T.infinity, std.math.copysign(std.math.PI_2, x.im));
1617     if (x.re == 0.0 && x.im == 0.0)
1618     {
1619         if (std.math.signbit(x.re))
1620             return Complex!T(-T.infinity, std.math.copysign(std.math.PI, x.im));
1621         else
1622             return Complex!T(-T.infinity, std.math.copysign(0.0, x.im));
1623     }
1624 
1625     return Complex!T(std.math.log(abs(x)), arg(x));
1626 }
1627 
1628 ///
1629 @safe pure nothrow @nogc unittest
1630 {
1631     import core.math : sqrt;
1632     import std.math.constants : PI;
1633     import std.math.operations : isClose;
1634 
1635     auto a = complex(2.0, 1.0);
1636     assert(log(conj(a)) == conj(log(a)));
1637 
1638     auto b = 2.0 * log10(complex(0.0, 1.0));
1639     auto c = 4.0 * log10(complex(sqrt(2.0) / 2, sqrt(2.0) / 2));
1640     assert(isClose(b, c, 0.0, 1e-15));
1641 
1642     assert(log(complex(-1.0L, 0.0L)) == complex(0.0L, PI));
1643     assert(log(complex(-1.0L, -0.0L)) == complex(0.0L, -PI));
1644 }
1645 
1646 @safe pure nothrow @nogc unittest
1647 {
1648     import std.math.traits : isNaN, isInfinity;
1649     import std.math.constants : PI, PI_2, PI_4;
1650 
1651     auto a = log(complex(-0.0L, 0.0L));
1652     assert(a == complex(-real.infinity, PI));
1653     auto b = log(complex(0.0L, 0.0L));
1654     assert(b == complex(-real.infinity, +0.0L));
1655     auto c = log(complex(1.0L, real.infinity));
1656     assert(c == complex(real.infinity, PI_2));
1657     auto d = log(complex(1.0L, real.nan));
1658     assert(d.re.isNaN && d.im.isNaN);
1659 
1660     auto e = log(complex(-real.infinity, 1.0L));
1661     assert(e == complex(real.infinity, PI));
1662     auto f = log(complex(real.infinity, 1.0L));
1663     assert(f == complex(real.infinity, 0.0L));
1664     auto g = log(complex(-real.infinity, real.infinity));
1665     assert(g == complex(real.infinity, 3.0 * PI_4));
1666     auto h = log(complex(real.infinity, real.infinity));
1667     assert(h == complex(real.infinity, PI_4));
1668     auto i = log(complex(real.infinity, real.nan));
1669     assert(i.re.isInfinity && i.im.isNaN);
1670 
1671     auto j = log(complex(real.nan, 1.0L));
1672     assert(j.re.isNaN && j.im.isNaN);
1673     auto k = log(complex(real.nan, real.infinity));
1674     assert(k.re.isInfinity && k.im.isNaN);
1675     auto l = log(complex(real.nan, real.nan));
1676     assert(l.re.isNaN && l.im.isNaN);
1677 }
1678 
1679 @safe pure nothrow @nogc unittest
1680 {
1681     import std.math.constants : PI;
1682     import std.math.operations : isClose;
1683 
1684     auto a = log(fromPolar(1.0, PI / 6.0));
1685     assert(isClose(a, complex(0.0L, 0.523598775598298873077L), 0.0, 1e-15));
1686 
1687     auto b = log(fromPolar(1.0, PI / 3.0));
1688     assert(isClose(b, complex(0.0L, 1.04719755119659774615L), 0.0, 1e-15));
1689 
1690     auto c = log(fromPolar(1.0, PI / 2.0));
1691     assert(isClose(c, complex(0.0L, 1.57079632679489661923L), 0.0, 1e-15));
1692 
1693     auto d = log(fromPolar(1.0, 2.0 * PI / 3.0));
1694     assert(isClose(d, complex(0.0L, 2.09439510239319549230L), 0.0, 1e-15));
1695 
1696     auto e = log(fromPolar(1.0, 5.0 * PI / 6.0));
1697     assert(isClose(e, complex(0.0L, 2.61799387799149436538L), 0.0, 1e-15));
1698 
1699     auto f = log(complex(-1.0L, 0.0L));
1700     assert(isClose(f, complex(0.0L, PI), 0.0, 1e-15));
1701 }
1702 
1703 /**
1704  * Calculate the base-10 logarithm of x.
1705  * Params:
1706  *      x = A complex number
1707  * Returns:
1708  *      The complex base 10 logarithm of `x`
1709  */
1710 Complex!T log10(T)(Complex!T x) @safe pure nothrow @nogc
1711 {
1712     import std.math.constants : LN10;
1713 
1714     return log(x) / Complex!T(LN10);
1715 }
1716 
1717 ///
1718 @safe pure nothrow @nogc unittest
1719 {
1720     import core.math : sqrt;
1721     import std.math.constants : LN10, PI;
1722     import std.math.operations : isClose;
1723 
1724     auto a = complex(2.0, 1.0);
1725     assert(log10(a) == log(a) / log(complex(10.0)));
1726 
1727     auto b = log10(complex(0.0, 1.0)) * 2.0;
1728     auto c = log10(complex(sqrt(2.0) / 2, sqrt(2.0) / 2)) * 4.0;
1729     assert(isClose(b, c, 0.0, 1e-15));
1730 }
1731 
1732 @safe pure nothrow @nogc unittest
1733 {
1734     import std.math.constants : LN10, PI;
1735     import std.math.operations : isClose;
1736 
1737     auto a = log10(fromPolar(1.0, PI / 6.0));
1738     assert(isClose(a, complex(0.0L, 0.227396058973640224580L), 0.0, 1e-15));
1739 
1740     auto b = log10(fromPolar(1.0, PI / 3.0));
1741     assert(isClose(b, complex(0.0L, 0.454792117947280449161L), 0.0, 1e-15));
1742 
1743     auto c = log10(fromPolar(1.0, PI / 2.0));
1744     assert(isClose(c, complex(0.0L, 0.682188176920920673742L), 0.0, 1e-15));
1745 
1746     auto d = log10(fromPolar(1.0, 2.0 * PI / 3.0));
1747     assert(isClose(d, complex(0.0L, 0.909584235894560898323L), 0.0, 1e-15));
1748 
1749     auto e = log10(fromPolar(1.0, 5.0 * PI / 6.0));
1750     assert(isClose(e, complex(0.0L, 1.13698029486820112290L), 0.0, 1e-15));
1751 
1752     auto f = log10(complex(-1.0L, 0.0L));
1753     assert(isClose(f, complex(0.0L, 1.36437635384184134748L), 0.0, 1e-15));
1754 
1755     assert(ceqrel(log10(complex(-100.0L, 0.0L)), complex(2.0L, PI / LN10)) >= real.mant_dig - 1);
1756     assert(ceqrel(log10(complex(-100.0L, -0.0L)), complex(2.0L, -PI / LN10)) >= real.mant_dig - 1);
1757 }
1758 
1759 /**
1760  * Calculates x$(SUPERSCRIPT n).
1761  * The branch cut is on the negative axis.
1762  * Params:
1763  *      x = base
1764  *      n = exponent
1765  * Returns:
1766  *      `x` raised to the power of `n`
1767  */
1768 Complex!T pow(T, Int)(Complex!T x, const Int n) @safe pure nothrow @nogc
1769 if (isIntegral!Int)
1770 {
1771     alias UInt = Unsigned!(Unqual!Int);
1772 
1773     UInt m = (n < 0) ? -cast(UInt) n : n;
1774     Complex!T y = (m % 2) ? x : Complex!T(1);
1775 
1776     while (m >>= 1)
1777     {
1778         x *= x;
1779         if (m % 2)
1780             y *= x;
1781     }
1782 
1783     return (n < 0) ? Complex!T(1) / y : y;
1784 }
1785 
1786 ///
1787 @safe pure nothrow @nogc unittest
1788 {
1789     import std.math.operations : isClose;
1790 
1791     auto a = complex(1.0, 2.0);
1792     assert(pow(a, 2) == a * a);
1793     assert(pow(a, 3) == a * a * a);
1794     assert(pow(a, -2) == 1.0 / (a * a));
1795     assert(isClose(pow(a, -3), 1.0 / (a * a * a)));
1796 }
1797 
1798 /// ditto
1799 Complex!T pow(T)(Complex!T x, const T n) @trusted pure nothrow @nogc
1800 {
1801     static import std.math;
1802 
1803     if (x == 0.0)
1804         return Complex!T(0.0);
1805 
1806     if (x.im == 0 && x.re > 0.0)
1807         return Complex!T(std.math.pow(x.re, n));
1808 
1809     Complex!T t = log(x);
1810     return fromPolar!(T, T)(std.math.exp(n * t.re), n * t.im);
1811 }
1812 
1813 ///
1814 @safe pure nothrow @nogc unittest
1815 {
1816     import std.math.operations : isClose;
1817     assert(pow(complex(0.0), 2.0) == complex(0.0));
1818     assert(pow(complex(5.0), 2.0) == complex(25.0));
1819 
1820     auto a = pow(complex(-1.0, 0.0), 0.5);
1821     assert(isClose(a, complex(0.0, +1.0), 0.0, 1e-16));
1822 
1823     auto b = pow(complex(-1.0, -0.0), 0.5);
1824     assert(isClose(b, complex(0.0, -1.0), 0.0, 1e-16));
1825 }
1826 
1827 /// ditto
1828 Complex!T pow(T)(Complex!T x, Complex!T y) @trusted pure nothrow @nogc
1829 {
1830     return (x == 0) ? Complex!T(0) : exp(y * log(x));
1831 }
1832 
1833 ///
1834 @safe pure nothrow @nogc unittest
1835 {
1836     import std.math.operations : isClose;
1837     import std.math.exponential : exp;
1838     import std.math.constants : PI;
1839     auto a = complex(0.0);
1840     auto b = complex(2.0);
1841     assert(pow(a, b) == complex(0.0));
1842 
1843     auto c = complex(0.0L, 1.0L);
1844     assert(isClose(pow(c, c), exp((-PI) / 2)));
1845 }
1846 
1847 /// ditto
1848 Complex!T pow(T)(const T x, Complex!T n) @trusted pure nothrow @nogc
1849 {
1850     static import std.math;
1851 
1852     return (x > 0.0)
1853         ? fromPolar!(T, T)(std.math.pow(x, n.re), n.im * std.math.log(x))
1854         : pow(Complex!T(x), n);
1855 }
1856 
1857 ///
1858 @safe pure nothrow @nogc unittest
1859 {
1860     import std.math.operations : isClose;
1861     assert(pow(2.0, complex(0.0)) == complex(1.0));
1862     assert(pow(2.0, complex(5.0)) == complex(32.0));
1863 
1864     auto a = pow(-2.0, complex(-1.0));
1865     assert(isClose(a, complex(-0.5), 0.0, 1e-16));
1866 
1867     auto b = pow(-0.5, complex(-1.0));
1868     assert(isClose(b, complex(-2.0), 0.0, 1e-15));
1869 }
1870 
1871 @safe pure nothrow @nogc unittest
1872 {
1873     import std.math.constants : PI;
1874     import std.math.operations : isClose;
1875 
1876     auto a = pow(complex(3.0, 4.0), 2);
1877     assert(isClose(a, complex(-7.0, 24.0)));
1878 
1879     auto b = pow(complex(3.0, 4.0), PI);
1880     assert(ceqrel(b, complex(-152.91512205297134, 35.547499631917738)) >= double.mant_dig - 3);
1881 
1882     auto c = pow(complex(3.0, 4.0), complex(-2.0, 1.0));
1883     assert(ceqrel(c, complex(0.015351734187477306, -0.0038407695456661503)) >= double.mant_dig - 3);
1884 
1885     auto d = pow(PI, complex(2.0, -1.0));
1886     assert(ceqrel(d, complex(4.0790296880118296, -8.9872469554541869)) >= double.mant_dig - 1);
1887 
1888     auto e = complex(2.0);
1889     assert(ceqrel(pow(e, 3), exp(3 * log(e))) >= double.mant_dig - 1);
1890 }
1891 
1892 @safe pure nothrow @nogc unittest
1893 {
1894     import std.meta : AliasSeq;
1895     import std.math.traits : floatTraits, RealFormat;
1896     static foreach (T; AliasSeq!(float, double, real))
1897     {{
1898          static if (floatTraits!T.realFormat == RealFormat.ibmExtended)
1899          {
1900              /* For IBM real, epsilon is too small (since 1.0 plus any double is
1901                 representable) to be able to expect results within epsilon * 100.  */
1902          }
1903          else
1904          {
1905              T eps = T.epsilon * 100;
1906 
1907              T a = -1.0;
1908              T b = 0.5;
1909              Complex!T ref1 = pow(complex(a), complex(b));
1910              Complex!T res1 = pow(a, complex(b));
1911              Complex!T res2 = pow(complex(a), b);
1912              assert(abs(ref1 - res1) < eps);
1913              assert(abs(ref1 - res2) < eps);
1914              assert(abs(res1 - res2) < eps);
1915 
1916              T c = -3.2;
1917              T d = 1.4;
1918              Complex!T ref2 = pow(complex(a), complex(b));
1919              Complex!T res3 = pow(a, complex(b));
1920              Complex!T res4 = pow(complex(a), b);
1921              assert(abs(ref2 - res3) < eps);
1922              assert(abs(ref2 - res4) < eps);
1923              assert(abs(res3 - res4) < eps);
1924          }
1925     }}
1926 }
1927 
1928 @safe pure nothrow @nogc unittest
1929 {
1930     import std.meta : AliasSeq;
1931     static foreach (T; AliasSeq!(float, double, real))
1932     {{
1933          auto c = Complex!T(123, 456);
1934          auto n = c.toNative();
1935          assert(c.re == n.re && c.im == n.im);
1936     }}
1937 }