1 // Written in the D programming language. 2 /** 3 Source: $(PHOBOSSRC std/experimental/allocator/building_blocks/kernighan_ritchie.d) 4 */ 5 module std.experimental.allocator.building_blocks.kernighan_ritchie; 6 import std.experimental.allocator.building_blocks.null_allocator : 7 NullAllocator; 8 9 //debug = KRRegion; 10 debug(KRRegion) import std.stdio; 11 12 // KRRegion 13 /** 14 `KRRegion` draws inspiration from the $(MREF_ALTTEXT region allocation 15 strategy, std,experimental,allocator,building_blocks,region) and also the 16 $(HTTP stackoverflow.com/questions/13159564/explain-this-implementation-of-malloc-from-the-kr-book, 17 famed allocator) described by Brian Kernighan and Dennis Ritchie in section 8.7 18 of the book $(HTTP amazon.com/exec/obidos/ASIN/0131103628/classicempire, "The C 19 Programming Language"), Second Edition, Prentice Hall, 1988. 20 21 $(H4 `KRRegion` = `Region` + Kernighan-Ritchie Allocator) 22 23 Initially, `KRRegion` starts in "region" mode: allocations are served from 24 the memory chunk in a region fashion. Thus, as long as there is enough memory 25 left, `KRRegion.allocate` has the performance profile of a region allocator. 26 Deallocation inserts (in $(BIGOH 1) time) the deallocated blocks in an 27 unstructured freelist, which is not read in region mode. 28 29 Once the region cannot serve an `allocate` request, `KRRegion` switches 30 to "free list" mode. It sorts the list of previously deallocated blocks by 31 address and serves allocation requests off that free list. The allocation and 32 deallocation follow the pattern described by Kernighan and Ritchie. 33 34 The recommended use of `KRRegion` is as a $(I region with deallocation). If the 35 `KRRegion` is dimensioned appropriately, it could often not enter free list 36 mode during its lifetime. Thus it is as fast as a simple region, whilst 37 offering deallocation at a small cost. When the region memory is exhausted, 38 the previously deallocated memory is still usable, at a performance cost. If 39 the region is not excessively large and fragmented, the linear allocation and 40 deallocation cost may still be compensated for by the good locality 41 characteristics. 42 43 If the chunk of memory managed is large, it may be desirable to switch 44 management to free list from the beginning. That way, memory may be used in a 45 more compact manner than region mode. To force free list mode, call $(D 46 switchToFreeList) shortly after construction or when deemed appropriate. 47 48 The smallest size that can be allocated is two words (16 bytes on 64-bit 49 systems, 8 bytes on 32-bit systems). This is because the free list management 50 needs two words (one for the length, the other for the next pointer in the 51 singly-linked list). 52 53 The `ParentAllocator` type parameter is the type of the allocator used to 54 allocate the memory chunk underlying the `KRRegion` object. Choosing the 55 default (`NullAllocator`) means the user is responsible for passing a buffer 56 at construction (and for deallocating it if necessary). Otherwise, `KRRegion` 57 automatically deallocates the buffer during destruction. For that reason, if 58 `ParentAllocator` is not `NullAllocator`, then `KRRegion` is not 59 copyable. 60 61 $(H4 Implementation Details) 62 63 In free list mode, `KRRegion` embeds a free blocks list onto the chunk of 64 memory. The free list is circular, coalesced, and sorted by address at all 65 times. Allocations and deallocations take time proportional to the number of 66 previously deallocated blocks. (In practice the cost may be lower, e.g. if 67 memory is deallocated in reverse order of allocation, all operations take 68 constant time.) Memory utilization is good (small control structure and no 69 per-allocation overhead). The disadvantages of freelist mode include proneness 70 to fragmentation, a minimum allocation size of two words, and linear worst-case 71 allocation and deallocation times. 72 73 Similarities of `KRRegion` (in free list mode) with the 74 Kernighan-Ritchie allocator: 75 76 $(UL 77 $(LI Free blocks have variable size and are linked in a singly-linked list.) 78 $(LI The freelist is maintained in increasing address order, which makes 79 coalescing easy.) 80 $(LI The strategy for finding the next available block is first fit.) 81 $(LI The free list is circular, with the last node pointing back to the first.) 82 $(LI Coalescing is carried during deallocation.) 83 ) 84 85 Differences from the Kernighan-Ritchie allocator: 86 87 $(UL 88 $(LI Once the chunk is exhausted, the Kernighan-Ritchie allocator allocates 89 another chunk using operating system primitives. For better composability, $(D 90 KRRegion) just gets full (returns `null` on new allocation requests). The 91 decision to allocate more blocks is deferred to a higher-level entity. For an 92 example, see the example below using `AllocatorList` in conjunction with $(D 93 KRRegion).) 94 $(LI Allocated blocks do not hold a size prefix. This is because in D the size 95 information is available in client code at deallocation time.) 96 ) 97 98 */ 99 struct KRRegion(ParentAllocator = NullAllocator) 100 { 101 import std.experimental.allocator.common : stateSize, alignedAt; 102 import std.traits : hasMember; 103 import std.typecons : Ternary; 104 105 private static struct Node 106 { 107 import std.typecons : tuple, Tuple; 108 109 Node* next; 110 size_t size; 111 112 this(this) @disable; 113 114 nothrow @nogc @trusted 115 void[] payload() inout 116 { 117 return (cast(ubyte*) &this)[0 .. size]; 118 } 119 120 nothrow @nogc @trusted 121 bool adjacent(in Node* right) const 122 { 123 assert(right); 124 auto p = payload; 125 return p.ptr < right && right < p.ptr + p.length + Node.sizeof; 126 } 127 128 nothrow @nogc @trusted 129 bool coalesce(void* memoryEnd = null) 130 { 131 // Coalesce the last node before the memory end with any possible gap 132 if (memoryEnd 133 && memoryEnd < payload.ptr + payload.length + Node.sizeof) 134 { 135 size += memoryEnd - (payload.ptr + payload.length); 136 return true; 137 } 138 139 if (!adjacent(next)) return false; 140 size = (cast(ubyte*) next + next.size) - cast(ubyte*) &this; 141 next = next.next; 142 return true; 143 } 144 145 nothrow @nogc @safe 146 Tuple!(void[], Node*) allocateHere(size_t bytes) 147 { 148 assert(bytes >= Node.sizeof); 149 assert(bytes % Node.alignof == 0); 150 assert(next); 151 assert(!adjacent(next)); 152 if (size < bytes) return typeof(return)(); 153 assert(size >= bytes); 154 immutable leftover = size - bytes; 155 156 if (leftover >= Node.sizeof) 157 { 158 // There's room for another node 159 auto newNode = (() @trusted => cast(Node*) ((cast(ubyte*) &this) + bytes))(); 160 newNode.size = leftover; 161 newNode.next = next == &this ? newNode : next; 162 assert(next); 163 return tuple(payload, newNode); 164 } 165 166 // No slack space, just return next node 167 return tuple(payload, next == &this ? null : next); 168 } 169 } 170 171 // state 172 /** 173 If `ParentAllocator` holds state, `parent` is a public member of type 174 `KRRegion`. Otherwise, `parent` is an `alias` for 175 `ParentAllocator.instance`. 176 */ 177 static if (stateSize!ParentAllocator) ParentAllocator parent; 178 else alias parent = ParentAllocator.instance; 179 private void[] payload; 180 private Node* root; 181 nothrow @nogc @safe private bool regionMode() const { return bytesUsedRegionMode != size_t.max; } 182 nothrow @nogc @safe private void cancelRegionMode() { bytesUsedRegionMode = size_t.max; } 183 private size_t bytesUsedRegionMode = 0; 184 185 auto byNodePtr() 186 { 187 static struct Range 188 { 189 Node* start, current; 190 @property bool empty() { return !current; } 191 @property Node* front() { return current; } 192 void popFront() 193 { 194 assert(current && current.next); 195 current = current.next; 196 if (current == start) current = null; 197 } 198 @property Range save() { return this; } 199 } 200 import std.range : isForwardRange; 201 static assert(isForwardRange!Range); 202 return Range(root, root); 203 } 204 205 string toString() 206 { 207 import std.format : format; 208 string s = "KRRegion@"; 209 s ~= format("%s-%s(0x%s[%s] %s", &this, &this + 1, 210 payload.ptr, payload.length, 211 regionMode ? "(region)" : "(freelist)"); 212 213 Node* lastNode = null; 214 if (!regionMode) 215 { 216 foreach (node; byNodePtr) 217 { 218 s ~= format(", %sfree(0x%s[%s])", 219 lastNode && lastNode.adjacent(node) ? "+" : "", 220 cast(void*) node, node.size); 221 lastNode = node; 222 } 223 } 224 else 225 { 226 for (auto node = root; node; node = node.next) 227 { 228 s ~= format(", %sfree(0x%s[%s])", 229 lastNode && lastNode.adjacent(node) ? "+" : "", 230 cast(void*) node, node.size); 231 lastNode = node; 232 } 233 } 234 235 s ~= ')'; 236 return s; 237 } 238 239 private void assertValid(string s) 240 { 241 assert(!regionMode); 242 if (!payload.ptr) 243 { 244 assert(!root, s); 245 return; 246 } 247 if (!root) 248 { 249 return; 250 } 251 assert(root >= payload.ptr, s); 252 assert(root < payload.ptr + payload.length, s); 253 254 // Check that the list terminates 255 size_t n; 256 foreach (node; byNodePtr) 257 { 258 assert(node.next); 259 assert(!node.adjacent(node.next)); 260 assert(n++ < payload.length / Node.sizeof, s); 261 } 262 } 263 264 nothrow @nogc @safe 265 private Node* sortFreelist(Node* root) 266 { 267 // Find a monotonic run 268 auto last = root; 269 for (;;) 270 { 271 if (!last.next) return root; 272 if (last > last.next) break; 273 assert(last < last.next); 274 last = last.next; 275 } 276 auto tail = last.next; 277 last.next = null; 278 tail = sortFreelist(tail); 279 return merge(root, tail); 280 } 281 282 nothrow @nogc @safe 283 private Node* merge(Node* left, Node* right) 284 { 285 assert(left != right); 286 if (!left) return right; 287 if (!right) return left; 288 if (left < right) 289 { 290 auto result = left; 291 result.next = merge(left.next, right); 292 return result; 293 } 294 auto result = right; 295 result.next = merge(left, right.next); 296 return result; 297 } 298 299 nothrow @nogc @safe 300 private void coalesceAndMakeCircular() 301 { 302 for (auto n = root;;) 303 { 304 assert(!n.next || n < n.next); 305 if (!n.next) 306 { 307 // Convert to circular 308 n.next = root; 309 break; 310 } 311 if (n.coalesce) continue; // possibly another coalesce 312 n = n.next; 313 } 314 } 315 316 /** 317 Create a `KRRegion`. If `ParentAllocator` is not `NullAllocator`, 318 `KRRegion`'s destructor will call `parent.deallocate`. 319 320 Params: 321 b = Block of memory to serve as support for the allocator. Memory must be 322 larger than two words and word-aligned. 323 n = Capacity desired. This constructor is defined only if $(D 324 ParentAllocator) is not `NullAllocator`. 325 */ 326 this(ubyte[] b) 327 { 328 if (b.length < Node.sizeof) 329 { 330 // Init as empty 331 assert(root is null); 332 assert(payload is null); 333 return; 334 } 335 assert(b.length >= Node.sizeof); 336 assert(b.ptr.alignedAt(Node.alignof)); 337 assert(b.length >= 2 * Node.sizeof); 338 payload = b; 339 root = cast(Node*) b.ptr; 340 // Initialize the free list with all list 341 assert(regionMode); 342 root.next = null; 343 root.size = b.length; 344 debug(KRRegion) writefln("KRRegion@%s: init with %s[%s]", &this, 345 b.ptr, b.length); 346 } 347 348 /// Ditto 349 static if (!is(ParentAllocator == NullAllocator) && !stateSize!ParentAllocator) 350 this(size_t n) 351 { 352 assert(n > Node.sizeof); 353 this(cast(ubyte[])(parent.allocate(n))); 354 } 355 356 /// Ditto 357 static if (!is(ParentAllocator == NullAllocator) && stateSize!ParentAllocator) 358 this(ParentAllocator parent, size_t n) 359 { 360 assert(n > Node.sizeof); 361 this.parent = parent; 362 this(cast(ubyte[])(parent.allocate(n))); 363 } 364 365 /// Ditto 366 static if (!is(ParentAllocator == NullAllocator) 367 && hasMember!(ParentAllocator, "deallocate")) 368 ~this() 369 { 370 parent.deallocate(payload); 371 } 372 373 /** 374 Forces free list mode. If already in free list mode, does nothing. 375 Otherwise, sorts the free list accumulated so far and switches strategy for 376 future allocations to KR style. 377 */ 378 nothrow @nogc @safe 379 void switchToFreeList() 380 { 381 if (!regionMode) return; 382 cancelRegionMode; 383 if (!root) return; 384 root = sortFreelist(root); 385 coalesceAndMakeCircular; 386 } 387 388 /* 389 Noncopyable 390 */ 391 @disable this(this); 392 393 /** 394 Word-level alignment. 395 */ 396 enum alignment = Node.alignof; 397 398 /** 399 Allocates `n` bytes. Allocation searches the list of available blocks 400 until a free block with `n` or more bytes is found (first fit strategy). 401 The block is split (if larger) and returned. 402 403 Params: n = number of bytes to _allocate 404 405 Returns: A word-aligned buffer of `n` bytes, or `null`. 406 */ 407 nothrow @nogc @safe 408 void[] allocate(size_t n) 409 { 410 if (!n || !root) return null; 411 const actualBytes = goodAllocSize(n); 412 413 // Try the region first 414 if (regionMode) 415 { 416 // Only look at the head of the freelist 417 if (root.size >= actualBytes) 418 { 419 // Enough room for allocation 420 bytesUsedRegionMode += actualBytes; 421 void* result = root; 422 immutable balance = root.size - actualBytes; 423 if (balance >= Node.sizeof) 424 { 425 auto newRoot = (() @trusted => cast(Node*) ((cast(ubyte*) result) + actualBytes))(); 426 newRoot.next = root.next; 427 newRoot.size = balance; 428 root = newRoot; 429 } 430 else 431 { 432 root = null; 433 switchToFreeList; 434 } 435 return (() @trusted => result[0 .. n])(); 436 } 437 438 // Not enough memory, switch to freelist mode and fall through 439 switchToFreeList; 440 } 441 442 // Try to allocate from next after the iterating node 443 for (auto pnode = root;;) 444 { 445 assert(!pnode.adjacent(pnode.next)); 446 auto k = pnode.next.allocateHere(actualBytes); 447 if (k[0] !is null) 448 { 449 // awes 450 assert(k[0].length >= n); 451 if (root == pnode.next) root = k[1]; 452 pnode.next = k[1]; 453 return k[0][0 .. n]; 454 } 455 456 pnode = pnode.next; 457 if (pnode == root) break; 458 } 459 return null; 460 } 461 462 /** 463 Deallocates `b`, which is assumed to have been previously allocated with 464 this allocator. Deallocation performs a linear search in the free list to 465 preserve its sorting order. It follows that blocks with higher addresses in 466 allocators with many free blocks are slower to deallocate. 467 468 Params: b = block to be deallocated 469 */ 470 nothrow @nogc 471 bool deallocate(void[] b) 472 { 473 debug(KRRegion) writefln("KRRegion@%s: deallocate(%s[%s])", &this, 474 b.ptr, b.length); 475 if (!b.ptr) return true; 476 assert(owns(b) == Ternary.yes); 477 assert(b.ptr.alignedAt(Node.alignof)); 478 479 // Insert back in the freelist, keeping it sorted by address. Do not 480 // coalesce at this time. Instead, do it lazily during allocation. 481 auto n = cast(Node*) b.ptr; 482 n.size = goodAllocSize(b.length); 483 auto memoryEnd = payload.ptr + payload.length; 484 485 if (regionMode) 486 { 487 assert(root); 488 // Insert right after root 489 bytesUsedRegionMode -= n.size; 490 n.next = root.next; 491 root.next = n; 492 return true; 493 } 494 495 if (!root) 496 { 497 // What a sight for sore eyes 498 root = n; 499 root.next = root; 500 501 // If the first block freed is the last one allocated, 502 // maybe there's a gap after it. 503 root.coalesce(memoryEnd); 504 return true; 505 } 506 507 version (assert) foreach (test; byNodePtr) 508 { 509 assert(test != n); 510 } 511 // Linear search 512 auto pnode = root; 513 do 514 { 515 assert(pnode && pnode.next); 516 assert(pnode != n); 517 assert(pnode.next != n); 518 519 if (pnode < pnode.next) 520 { 521 if (pnode > n || n > pnode.next) continue; 522 // Insert in between pnode and pnode.next 523 n.next = pnode.next; 524 pnode.next = n; 525 n.coalesce; 526 pnode.coalesce; 527 root = pnode; 528 return true; 529 } 530 else if (pnode < n) 531 { 532 // Insert at the end of the list 533 // Add any possible gap at the end of n to the length of n 534 n.next = pnode.next; 535 pnode.next = n; 536 n.coalesce(memoryEnd); 537 pnode.coalesce; 538 root = pnode; 539 return true; 540 } 541 else if (n < pnode.next) 542 { 543 // Insert at the front of the list 544 n.next = pnode.next; 545 pnode.next = n; 546 n.coalesce; 547 root = n; 548 return true; 549 } 550 } 551 while ((pnode = pnode.next) != root); 552 assert(0, "Wrong parameter passed to deallocate"); 553 } 554 555 /** 556 Allocates all memory available to this allocator. If the allocator is empty, 557 returns the entire available block of memory. Otherwise, it still performs 558 a best-effort allocation: if there is no fragmentation (e.g. `allocate` 559 has been used but not `deallocate`), allocates and returns the only 560 available block of memory. 561 562 The operation takes time proportional to the number of adjacent free blocks 563 at the front of the free list. These blocks get coalesced, whether 564 `allocateAll` succeeds or fails due to fragmentation. 565 */ 566 nothrow @nogc @safe 567 void[] allocateAll() 568 { 569 if (regionMode) switchToFreeList; 570 if (root && root.next == root) 571 return allocate(root.size); 572 return null; 573 } 574 575 /// 576 @system unittest 577 { 578 import std.experimental.allocator.gc_allocator : GCAllocator; 579 auto alloc = KRRegion!GCAllocator(1024 * 64); 580 const b1 = alloc.allocate(2048); 581 assert(b1.length == 2048); 582 const b2 = alloc.allocateAll; 583 assert(b2.length == 1024 * 62); 584 } 585 586 /** 587 Deallocates all memory currently allocated, making the allocator ready for 588 other allocations. This is a $(BIGOH 1) operation. 589 */ 590 pure nothrow @nogc 591 bool deallocateAll() 592 { 593 debug(KRRegion) assertValid("deallocateAll"); 594 debug(KRRegion) scope(exit) assertValid("deallocateAll"); 595 root = cast(Node*) payload.ptr; 596 597 // Reset to regionMode 598 bytesUsedRegionMode = 0; 599 if (root) 600 { 601 root.next = null; 602 root.size = payload.length; 603 } 604 return true; 605 } 606 607 /** 608 Checks whether the allocator is responsible for the allocation of `b`. 609 It does a simple $(BIGOH 1) range check. `b` should be a buffer either 610 allocated with `this` or obtained through other means. 611 */ 612 pure nothrow @trusted @nogc 613 Ternary owns(void[] b) 614 { 615 debug(KRRegion) assertValid("owns"); 616 debug(KRRegion) scope(exit) assertValid("owns"); 617 return Ternary(b && payload && (&b[0] >= &payload[0]) 618 && (&b[0] < &payload[0] + payload.length)); 619 } 620 621 /** 622 Adjusts `n` to a size suitable for allocation (two words or larger, 623 word-aligned). 624 */ 625 pure nothrow @safe @nogc 626 static size_t goodAllocSize(size_t n) 627 { 628 import std.experimental.allocator.common : roundUpToMultipleOf; 629 return n <= Node.sizeof 630 ? Node.sizeof : n.roundUpToMultipleOf(alignment); 631 } 632 633 /** 634 Returns: `Ternary.yes` if the allocator is empty, `Ternary.no` otherwise. 635 Never returns `Ternary.unknown`. 636 */ 637 pure nothrow @safe @nogc 638 Ternary empty() 639 { 640 if (regionMode) 641 return Ternary(bytesUsedRegionMode == 0); 642 643 return Ternary(root && root.size == payload.length); 644 } 645 } 646 647 /** 648 `KRRegion` is preferable to `Region` as a front for a general-purpose 649 allocator if `deallocate` is needed, yet the actual deallocation traffic is 650 relatively low. The example below shows a `KRRegion` using stack storage 651 fronting the GC allocator. 652 */ 653 @system unittest 654 { 655 import std.experimental.allocator.building_blocks.fallback_allocator 656 : fallbackAllocator; 657 import std.experimental.allocator.gc_allocator : GCAllocator; 658 import std.typecons : Ternary; 659 // KRRegion fronting a general-purpose allocator 660 align(KRRegion!().alignment) ubyte[1024 * 128] buf; 661 auto alloc = fallbackAllocator(KRRegion!()(buf), GCAllocator.instance); 662 auto b = alloc.allocate(100); 663 assert(b.length == 100); 664 assert((() pure nothrow @safe @nogc => alloc.primary.owns(b))() == Ternary.yes); 665 } 666 667 /** 668 The code below defines a scalable allocator consisting of 1 MB (or larger) 669 blocks fetched from the garbage-collected heap. Each block is organized as a 670 KR-style heap. More blocks are allocated and freed on a need basis. 671 672 This is the closest example to the allocator introduced in the K$(AMP)R book. 673 It should perform slightly better because instead of searching through one 674 large free list, it searches through several shorter lists in LRU order. Also, 675 it actually returns memory to the operating system when possible. 676 */ 677 @system unittest 678 { 679 import std.algorithm.comparison : max; 680 import std.experimental.allocator.building_blocks.allocator_list 681 : AllocatorList; 682 import std.experimental.allocator.mmap_allocator : MmapAllocator; 683 AllocatorList!(n => KRRegion!MmapAllocator(max(n * 16, 1024 * 1024))) alloc; 684 } 685 686 @system unittest 687 { 688 import std.algorithm.comparison : max; 689 import std.experimental.allocator.building_blocks.allocator_list 690 : AllocatorList; 691 import std.experimental.allocator.mallocator : Mallocator; 692 import std.typecons : Ternary; 693 /* 694 Create a scalable allocator consisting of 1 MB (or larger) blocks fetched 695 from the garbage-collected heap. Each block is organized as a KR-style 696 heap. More blocks are allocated and freed on a need basis. 697 */ 698 AllocatorList!(n => KRRegion!Mallocator(max(n * 16, 1024 * 1024)), 699 NullAllocator) alloc; 700 void[][50] array; 701 foreach (i; 0 .. array.length) 702 { 703 auto length = i * 10_000 + 1; 704 array[i] = alloc.allocate(length); 705 assert(array[i].ptr); 706 assert(array[i].length == length); 707 } 708 import std.random : randomShuffle; 709 randomShuffle(array[]); 710 foreach (i; 0 .. array.length) 711 { 712 assert(array[i].ptr); 713 assert((() pure nothrow @safe @nogc => alloc.owns(array[i]))() == Ternary.yes); 714 () nothrow @nogc { alloc.deallocate(array[i]); }(); 715 } 716 } 717 718 @system unittest 719 { 720 import std.algorithm.comparison : max; 721 import std.experimental.allocator.building_blocks.allocator_list 722 : AllocatorList; 723 import std.experimental.allocator.mmap_allocator : MmapAllocator; 724 import std.typecons : Ternary; 725 /* 726 Create a scalable allocator consisting of 1 MB (or larger) blocks fetched 727 from the garbage-collected heap. Each block is organized as a KR-style 728 heap. More blocks are allocated and freed on a need basis. 729 */ 730 AllocatorList!((n) { 731 auto result = KRRegion!MmapAllocator(max(n * 2, 1024 * 1024)); 732 return result; 733 }) alloc; 734 void[][99] array; 735 foreach (i; 0 .. array.length) 736 { 737 auto length = i * 10_000 + 1; 738 array[i] = alloc.allocate(length); 739 assert(array[i].ptr); 740 foreach (j; 0 .. i) 741 { 742 assert(array[i].ptr != array[j].ptr); 743 } 744 assert(array[i].length == length); 745 } 746 import std.random : randomShuffle; 747 randomShuffle(array[]); 748 foreach (i; 0 .. array.length) 749 { 750 assert((() pure nothrow @safe @nogc => alloc.owns(array[i]))() == Ternary.yes); 751 () nothrow @nogc { alloc.deallocate(array[i]); }(); 752 } 753 } 754 755 version (StdUnittest) 756 @system unittest 757 { 758 import std.algorithm.comparison : max; 759 import std.experimental.allocator.building_blocks.allocator_list 760 : AllocatorList; 761 import std.experimental.allocator.common : testAllocator; 762 import std.experimental.allocator.gc_allocator : GCAllocator; 763 testAllocator!(() => AllocatorList!( 764 n => KRRegion!GCAllocator(max(n * 16, 1024 * 1024)))()); 765 } 766 767 @system unittest 768 { 769 import std.experimental.allocator.gc_allocator : GCAllocator; 770 771 auto alloc = KRRegion!GCAllocator(1024 * 1024); 772 773 void[][] array; 774 foreach (i; 1 .. 4) 775 { 776 array ~= alloc.allocate(i); 777 assert(array[$ - 1].length == i); 778 } 779 () nothrow @nogc { alloc.deallocate(array[1]); }(); 780 () nothrow @nogc { alloc.deallocate(array[0]); }(); 781 () nothrow @nogc { alloc.deallocate(array[2]); }(); 782 assert(alloc.allocateAll().length == 1024 * 1024); 783 } 784 785 @system unittest 786 { 787 import std.experimental.allocator.gc_allocator : GCAllocator; 788 import std.typecons : Ternary; 789 auto alloc = KRRegion!()( 790 cast(ubyte[])(GCAllocator.instance.allocate(1024 * 1024))); 791 const store = alloc.allocate(KRRegion!().sizeof); 792 auto p = cast(KRRegion!()* ) store.ptr; 793 import core.lifetime : emplace; 794 import core.stdc.string : memcpy; 795 import std.conv : text; 796 797 memcpy(p, &alloc, alloc.sizeof); 798 emplace(&alloc); 799 800 void[][100] array; 801 foreach (i; 0 .. array.length) 802 { 803 auto length = 100 * i + 1; 804 array[i] = p.allocate(length); 805 assert(array[i].length == length, text(array[i].length)); 806 assert((() pure nothrow @safe @nogc => p.owns(array[i]))() == Ternary.yes); 807 } 808 import std.random : randomShuffle; 809 randomShuffle(array[]); 810 foreach (i; 0 .. array.length) 811 { 812 assert((() pure nothrow @safe @nogc => p.owns(array[i]))() == Ternary.yes); 813 () nothrow @nogc { p.deallocate(array[i]); }(); 814 } 815 auto b = p.allocateAll(); 816 assert(b.length == 1024 * 1024 - KRRegion!().sizeof, text(b.length)); 817 } 818 819 @system unittest 820 { 821 import std.typecons : Ternary; 822 import std.experimental.allocator.gc_allocator : GCAllocator; 823 auto alloc = KRRegion!()( 824 cast(ubyte[])(GCAllocator.instance.allocate(1024 * 1024))); 825 auto p = alloc.allocateAll(); 826 assert(p.length == 1024 * 1024); 827 assert((() nothrow @nogc => alloc.deallocateAll())()); 828 assert(alloc.empty() == Ternary.yes); 829 p = alloc.allocateAll(); 830 assert(p.length == 1024 * 1024); 831 } 832 833 @system unittest 834 { 835 import std.random : randomCover; 836 import std.typecons : Ternary; 837 838 // Both sequences must work on either system 839 840 // A sequence of allocs which generates the error described in https://issues.dlang.org/show_bug.cgi?id=16564 841 // that is a gap at the end of buf from the perspective of the allocator 842 843 // for 64 bit systems (leftover balance = 8 bytes < 16) 844 int[] sizes64 = [18904, 2008, 74904, 224, 111904, 1904, 52288, 8]; 845 846 // for 32 bit systems (leftover balance < 8) 847 int[] sizes32 = [81412, 107068, 49892, 23768]; 848 849 850 void test(int[] sizes) 851 { 852 align(size_t.sizeof) ubyte[256 * 1024] buf; 853 auto a = KRRegion!()(buf); 854 855 void[][] bufs; 856 857 foreach (size; sizes) 858 { 859 bufs ~= a.allocate(size); 860 } 861 862 foreach (b; bufs.randomCover) 863 { 864 () nothrow @nogc { a.deallocate(b); }(); 865 } 866 867 assert((() pure nothrow @safe @nogc => a.empty)() == Ternary.yes); 868 } 869 870 test(sizes64); 871 test(sizes32); 872 } 873 874 @system unittest 875 { 876 import std.typecons : Ternary; 877 878 // For 64 bits, we allocate in multiples of 8, but the minimum alloc size is 16. 879 // This can create gaps. 880 // This test is an example of such a case. The gap is formed between the block 881 // allocated for the second value in sizes and the third. There is also a gap 882 // at the very end. (total lost 2 * word) 883 884 int[] sizes64 = [2008, 18904, 74904, 224, 111904, 1904, 52288, 8]; 885 int[] sizes32 = [81412, 107068, 49892, 23768]; 886 887 int word64 = 8; 888 int word32 = 4; 889 890 void test(int[] sizes, int word) 891 { 892 align(size_t.sizeof) ubyte[256 * 1024] buf; 893 auto a = KRRegion!()(buf); 894 895 void[][] bufs; 896 897 foreach (size; sizes) 898 { 899 bufs ~= a.allocate(size); 900 } 901 902 () nothrow @nogc { a.deallocate(bufs[1]); }(); 903 bufs ~= a.allocate(sizes[1] - word); 904 905 () nothrow @nogc { a.deallocate(bufs[0]); }(); 906 foreach (i; 2 .. bufs.length) 907 { 908 () nothrow @nogc { a.deallocate(bufs[i]); }(); 909 } 910 911 assert((() pure nothrow @safe @nogc => a.empty)() == Ternary.yes); 912 } 913 914 test(sizes64, word64); 915 test(sizes32, word32); 916 } 917 918 @system unittest 919 { 920 import std.experimental.allocator.gc_allocator : GCAllocator; 921 922 auto a = KRRegion!GCAllocator(1024 * 1024); 923 assert((() pure nothrow @safe @nogc => a.goodAllocSize(1))() == typeof(*a.root).sizeof); 924 } 925 926 @system unittest 927 { import std.typecons : Ternary; 928 929 align(KRRegion!().alignment) ubyte[1024] b; 930 auto alloc = KRRegion!()(b); 931 932 auto k = alloc.allocate(128); 933 assert(k.length == 128); 934 assert(alloc.empty == Ternary.no); 935 assert(alloc.deallocate(k)); 936 assert(alloc.empty == Ternary.yes); 937 938 k = alloc.allocate(512); 939 assert(k.length == 512); 940 assert(alloc.empty == Ternary.no); 941 assert(alloc.deallocate(k)); 942 assert(alloc.empty == Ternary.yes); 943 944 k = alloc.allocate(1024); 945 assert(k.length == 1024); 946 assert(alloc.empty == Ternary.no); 947 assert(alloc.deallocate(k)); 948 assert(alloc.empty == Ternary.yes); 949 }