1 // Written in the D programming language. 2 3 /** 4 This is a submodule of $(MREF std, math). 5 6 It contains several functions for work with floating point numbers. 7 8 Copyright: Copyright The D Language Foundation 2000 - 2011. 9 License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0). 10 Authors: $(HTTP digitalmars.com, Walter Bright), Don Clugston, 11 Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger 12 Source: $(PHOBOSSRC std/math/operations.d) 13 14 Macros: 15 TABLE_SV = <table border="1" cellpadding="4" cellspacing="0"> 16 <caption>Special Values</caption> 17 $0</table> 18 SVH = $(TR $(TH $1) $(TH $2)) 19 SV = $(TR $(TD $1) $(TD $2)) 20 NAN = $(RED NAN) 21 PLUSMN = ± 22 INFIN = ∞ 23 LT = < 24 GT = > 25 */ 26 27 module std.math.operations; 28 29 import std.traits : CommonType, isFloatingPoint, isIntegral, Unqual; 30 31 // Functions for NaN payloads 32 /* 33 * A 'payload' can be stored in the significand of a $(NAN). One bit is required 34 * to distinguish between a quiet and a signalling $(NAN). This leaves 22 bits 35 * of payload for a float; 51 bits for a double; 62 bits for an 80-bit real; 36 * and 111 bits for a 128-bit quad. 37 */ 38 /** 39 * Create a quiet $(NAN), storing an integer inside the payload. 40 * 41 * For floats, the largest possible payload is 0x3F_FFFF. 42 * For doubles, it is 0x3_FFFF_FFFF_FFFF. 43 * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF. 44 */ 45 real NaN(ulong payload) @trusted pure nothrow @nogc 46 { 47 import std.math.traits : floatTraits, RealFormat; 48 49 alias F = floatTraits!(real); 50 static if (F.realFormat == RealFormat.ieeeExtended || 51 F.realFormat == RealFormat.ieeeExtended53) 52 { 53 // real80 (in x86 real format, the implied bit is actually 54 // not implied but a real bit which is stored in the real) 55 ulong v = 3; // implied bit = 1, quiet bit = 1 56 } 57 else 58 { 59 ulong v = 1; // no implied bit. quiet bit = 1 60 } 61 if (__ctfe) 62 { 63 v = 1; // We use a double in CTFE. 64 assert(payload >>> 51 == 0, 65 "Cannot set more than 51 bits of NaN payload in CTFE."); 66 } 67 68 69 ulong a = payload; 70 71 // 22 Float bits 72 ulong w = a & 0x3F_FFFF; 73 a -= w; 74 75 v <<=22; 76 v |= w; 77 a >>=22; 78 79 // 29 Double bits 80 v <<=29; 81 w = a & 0xFFF_FFFF; 82 v |= w; 83 a -= w; 84 a >>=29; 85 86 if (__ctfe) 87 { 88 v |= 0x7FF0_0000_0000_0000; 89 return *cast(double*) &v; 90 } 91 else static if (F.realFormat == RealFormat.ieeeDouble) 92 { 93 v |= 0x7FF0_0000_0000_0000; 94 real x; 95 * cast(ulong *)(&x) = v; 96 return x; 97 } 98 else 99 { 100 v <<=11; 101 a &= 0x7FF; 102 v |= a; 103 real x = real.nan; 104 105 // Extended real bits 106 static if (F.realFormat == RealFormat.ieeeQuadruple) 107 { 108 v <<= 1; // there's no implicit bit 109 110 version (LittleEndian) 111 { 112 *cast(ulong*)(6+cast(ubyte*)(&x)) = v; 113 } 114 else 115 { 116 *cast(ulong*)(2+cast(ubyte*)(&x)) = v; 117 } 118 } 119 else 120 { 121 *cast(ulong *)(&x) = v; 122 } 123 return x; 124 } 125 } 126 127 /// 128 @safe @nogc pure nothrow unittest 129 { 130 import std.math.traits : isNaN; 131 132 real a = NaN(1_000_000); 133 assert(isNaN(a)); 134 assert(getNaNPayload(a) == 1_000_000); 135 } 136 137 @system pure nothrow @nogc unittest // not @safe because taking address of local. 138 { 139 import std.math.traits : floatTraits, RealFormat; 140 141 static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble) 142 { 143 auto x = NaN(1); 144 auto xl = *cast(ulong*)&x; 145 assert(xl & 0x8_0000_0000_0000UL); //non-signaling bit, bit 52 146 assert((xl & 0x7FF0_0000_0000_0000UL) == 0x7FF0_0000_0000_0000UL); //all exp bits set 147 } 148 } 149 150 /** 151 * Extract an integral payload from a $(NAN). 152 * 153 * Returns: 154 * the integer payload as a ulong. 155 * 156 * For floats, the largest possible payload is 0x3F_FFFF. 157 * For doubles, it is 0x3_FFFF_FFFF_FFFF. 158 * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF. 159 */ 160 ulong getNaNPayload(real x) @trusted pure nothrow @nogc 161 { 162 import std.math.traits : floatTraits, RealFormat; 163 164 // assert(isNaN(x)); 165 alias F = floatTraits!(real); 166 ulong m = void; 167 if (__ctfe) 168 { 169 double y = x; 170 m = *cast(ulong*) &y; 171 // Make it look like an 80-bit significand. 172 // Skip exponent, and quiet bit 173 m &= 0x0007_FFFF_FFFF_FFFF; 174 m <<= 11; 175 } 176 else static if (F.realFormat == RealFormat.ieeeDouble) 177 { 178 m = *cast(ulong*)(&x); 179 // Make it look like an 80-bit significand. 180 // Skip exponent, and quiet bit 181 m &= 0x0007_FFFF_FFFF_FFFF; 182 m <<= 11; 183 } 184 else static if (F.realFormat == RealFormat.ieeeQuadruple) 185 { 186 version (LittleEndian) 187 { 188 m = *cast(ulong*)(6+cast(ubyte*)(&x)); 189 } 190 else 191 { 192 m = *cast(ulong*)(2+cast(ubyte*)(&x)); 193 } 194 195 m >>= 1; // there's no implicit bit 196 } 197 else 198 { 199 m = *cast(ulong*)(&x); 200 } 201 202 // ignore implicit bit and quiet bit 203 204 const ulong f = m & 0x3FFF_FF00_0000_0000L; 205 206 ulong w = f >>> 40; 207 w |= (m & 0x00FF_FFFF_F800L) << (22 - 11); 208 w |= (m & 0x7FF) << 51; 209 return w; 210 } 211 212 /// 213 @safe @nogc pure nothrow unittest 214 { 215 import std.math.traits : isNaN; 216 217 real a = NaN(1_000_000); 218 assert(isNaN(a)); 219 assert(getNaNPayload(a) == 1_000_000); 220 } 221 222 @safe @nogc pure nothrow unittest 223 { 224 import std.math.traits : isIdentical, isNaN; 225 226 enum real a = NaN(1_000_000); 227 static assert(isNaN(a)); 228 static assert(getNaNPayload(a) == 1_000_000); 229 real b = NaN(1_000_000); 230 assert(isIdentical(b, a)); 231 // The CTFE version of getNaNPayload relies on it being impossible 232 // for a CTFE-constructed NaN to have more than 51 bits of payload. 233 enum nanNaN = NaN(getNaNPayload(real.nan)); 234 assert(isIdentical(real.nan, nanNaN)); 235 static if (real.init != real.init) 236 { 237 enum initNaN = NaN(getNaNPayload(real.init)); 238 assert(isIdentical(real.init, initNaN)); 239 } 240 } 241 242 debug(UnitTest) 243 { 244 @safe pure nothrow @nogc unittest 245 { 246 real nan4 = NaN(0x789_ABCD_EF12_3456); 247 static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended 248 || floatTraits!(real).realFormat == RealFormat.ieeeQuadruple) 249 { 250 assert(getNaNPayload(nan4) == 0x789_ABCD_EF12_3456); 251 } 252 else 253 { 254 assert(getNaNPayload(nan4) == 0x1_ABCD_EF12_3456); 255 } 256 double nan5 = nan4; 257 assert(getNaNPayload(nan5) == 0x1_ABCD_EF12_3456); 258 float nan6 = nan4; 259 assert(getNaNPayload(nan6) == 0x12_3456); 260 nan4 = NaN(0xFABCD); 261 assert(getNaNPayload(nan4) == 0xFABCD); 262 nan6 = nan4; 263 assert(getNaNPayload(nan6) == 0xFABCD); 264 nan5 = NaN(0x100_0000_0000_3456); 265 assert(getNaNPayload(nan5) == 0x0000_0000_3456); 266 } 267 } 268 269 /** 270 * Calculate the next largest floating point value after x. 271 * 272 * Return the least number greater than x that is representable as a real; 273 * thus, it gives the next point on the IEEE number line. 274 * 275 * $(TABLE_SV 276 * $(SVH x, nextUp(x) ) 277 * $(SV -$(INFIN), -real.max ) 278 * $(SV $(PLUSMN)0.0, real.min_normal*real.epsilon ) 279 * $(SV real.max, $(INFIN) ) 280 * $(SV $(INFIN), $(INFIN) ) 281 * $(SV $(NAN), $(NAN) ) 282 * ) 283 */ 284 real nextUp(real x) @trusted pure nothrow @nogc 285 { 286 import std.math.traits : floatTraits, RealFormat, MANTISSA_MSB, MANTISSA_LSB; 287 288 alias F = floatTraits!(real); 289 static if (F.realFormat != RealFormat.ieeeDouble) 290 { 291 if (__ctfe) 292 { 293 if (x == -real.infinity) 294 return -real.max; 295 if (!(x < real.infinity)) // Infinity or NaN. 296 return x; 297 real delta; 298 // Start with a decent estimate of delta. 299 if (x <= 0x1.ffffffffffffep+1023 && x >= -double.max) 300 { 301 const double d = cast(double) x; 302 delta = (cast(real) nextUp(d) - cast(real) d) * 0x1p-11L; 303 while (x + (delta * 0x1p-100L) > x) 304 delta *= 0x1p-100L; 305 } 306 else 307 { 308 delta = 0x1p960L; 309 while (!(x + delta > x) && delta < real.max * 0x1p-100L) 310 delta *= 0x1p100L; 311 } 312 if (x + delta > x) 313 { 314 while (x + (delta / 2) > x) 315 delta /= 2; 316 } 317 else 318 { 319 do { delta += delta; } while (!(x + delta > x)); 320 } 321 if (x < 0 && x + delta == 0) 322 return -0.0L; 323 return x + delta; 324 } 325 } 326 static if (F.realFormat == RealFormat.ieeeDouble) 327 { 328 return nextUp(cast(double) x); 329 } 330 else static if (F.realFormat == RealFormat.ieeeQuadruple) 331 { 332 ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; 333 if (e == F.EXPMASK) 334 { 335 // NaN or Infinity 336 if (x == -real.infinity) return -real.max; 337 return x; // +Inf and NaN are unchanged. 338 } 339 340 auto ps = cast(ulong *)&x; 341 if (ps[MANTISSA_MSB] & 0x8000_0000_0000_0000) 342 { 343 // Negative number 344 if (ps[MANTISSA_LSB] == 0 && ps[MANTISSA_MSB] == 0x8000_0000_0000_0000) 345 { 346 // it was negative zero, change to smallest subnormal 347 ps[MANTISSA_LSB] = 1; 348 ps[MANTISSA_MSB] = 0; 349 return x; 350 } 351 if (ps[MANTISSA_LSB] == 0) --ps[MANTISSA_MSB]; 352 --ps[MANTISSA_LSB]; 353 } 354 else 355 { 356 // Positive number 357 ++ps[MANTISSA_LSB]; 358 if (ps[MANTISSA_LSB] == 0) ++ps[MANTISSA_MSB]; 359 } 360 return x; 361 } 362 else static if (F.realFormat == RealFormat.ieeeExtended || 363 F.realFormat == RealFormat.ieeeExtended53) 364 { 365 // For 80-bit reals, the "implied bit" is a nuisance... 366 ushort *pe = cast(ushort *)&x; 367 ulong *ps = cast(ulong *)&x; 368 // EPSILON is 1 for 64-bit, and 2048 for 53-bit precision reals. 369 enum ulong EPSILON = 2UL ^^ (64 - real.mant_dig); 370 371 if ((pe[F.EXPPOS_SHORT] & F.EXPMASK) == F.EXPMASK) 372 { 373 // First, deal with NANs and infinity 374 if (x == -real.infinity) return -real.max; 375 return x; // +Inf and NaN are unchanged. 376 } 377 if (pe[F.EXPPOS_SHORT] & 0x8000) 378 { 379 // Negative number -- need to decrease the significand 380 *ps -= EPSILON; 381 // Need to mask with 0x7FFF... so subnormals are treated correctly. 382 if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_FFFF_FFFF_FFFF) 383 { 384 if (pe[F.EXPPOS_SHORT] == 0x8000) // it was negative zero 385 { 386 *ps = 1; 387 pe[F.EXPPOS_SHORT] = 0; // smallest subnormal. 388 return x; 389 } 390 391 --pe[F.EXPPOS_SHORT]; 392 393 if (pe[F.EXPPOS_SHORT] == 0x8000) 394 return x; // it's become a subnormal, implied bit stays low. 395 396 *ps = 0xFFFF_FFFF_FFFF_FFFF; // set the implied bit 397 return x; 398 } 399 return x; 400 } 401 else 402 { 403 // Positive number -- need to increase the significand. 404 // Works automatically for positive zero. 405 *ps += EPSILON; 406 if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0) 407 { 408 // change in exponent 409 ++pe[F.EXPPOS_SHORT]; 410 *ps = 0x8000_0000_0000_0000; // set the high bit 411 } 412 } 413 return x; 414 } 415 else // static if (F.realFormat == RealFormat.ibmExtended) 416 { 417 assert(0, "nextUp not implemented"); 418 } 419 } 420 421 /** ditto */ 422 double nextUp(double x) @trusted pure nothrow @nogc 423 { 424 ulong s = *cast(ulong *)&x; 425 426 if ((s & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000) 427 { 428 // First, deal with NANs and infinity 429 if (x == -x.infinity) return -x.max; 430 return x; // +INF and NAN are unchanged. 431 } 432 if (s & 0x8000_0000_0000_0000) // Negative number 433 { 434 if (s == 0x8000_0000_0000_0000) // it was negative zero 435 { 436 s = 0x0000_0000_0000_0001; // change to smallest subnormal 437 return *cast(double*) &s; 438 } 439 --s; 440 } 441 else 442 { // Positive number 443 ++s; 444 } 445 return *cast(double*) &s; 446 } 447 448 /** ditto */ 449 float nextUp(float x) @trusted pure nothrow @nogc 450 { 451 uint s = *cast(uint *)&x; 452 453 if ((s & 0x7F80_0000) == 0x7F80_0000) 454 { 455 // First, deal with NANs and infinity 456 if (x == -x.infinity) return -x.max; 457 458 return x; // +INF and NAN are unchanged. 459 } 460 if (s & 0x8000_0000) // Negative number 461 { 462 if (s == 0x8000_0000) // it was negative zero 463 { 464 s = 0x0000_0001; // change to smallest subnormal 465 return *cast(float*) &s; 466 } 467 468 --s; 469 } 470 else 471 { 472 // Positive number 473 ++s; 474 } 475 return *cast(float*) &s; 476 } 477 478 /// 479 @safe @nogc pure nothrow unittest 480 { 481 assert(nextUp(1.0 - 1.0e-6).feqrel(0.999999) > 16); 482 assert(nextUp(1.0 - real.epsilon).feqrel(1.0) > 16); 483 } 484 485 /** 486 * Calculate the next smallest floating point value before x. 487 * 488 * Return the greatest number less than x that is representable as a real; 489 * thus, it gives the previous point on the IEEE number line. 490 * 491 * $(TABLE_SV 492 * $(SVH x, nextDown(x) ) 493 * $(SV $(INFIN), real.max ) 494 * $(SV $(PLUSMN)0.0, -real.min_normal*real.epsilon ) 495 * $(SV -real.max, -$(INFIN) ) 496 * $(SV -$(INFIN), -$(INFIN) ) 497 * $(SV $(NAN), $(NAN) ) 498 * ) 499 */ 500 real nextDown(real x) @safe pure nothrow @nogc 501 { 502 return -nextUp(-x); 503 } 504 505 /** ditto */ 506 double nextDown(double x) @safe pure nothrow @nogc 507 { 508 return -nextUp(-x); 509 } 510 511 /** ditto */ 512 float nextDown(float x) @safe pure nothrow @nogc 513 { 514 return -nextUp(-x); 515 } 516 517 /// 518 @safe pure nothrow @nogc unittest 519 { 520 assert( nextDown(1.0 + real.epsilon) == 1.0); 521 } 522 523 @safe pure nothrow @nogc unittest 524 { 525 import std.math.traits : floatTraits, RealFormat, isIdentical; 526 527 static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended || 528 floatTraits!(real).realFormat == RealFormat.ieeeDouble || 529 floatTraits!(real).realFormat == RealFormat.ieeeExtended53 || 530 floatTraits!(real).realFormat == RealFormat.ieeeQuadruple) 531 { 532 // Tests for reals 533 assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC))); 534 //static assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC))); 535 // negative numbers 536 assert( nextUp(-real.infinity) == -real.max ); 537 assert( nextUp(-1.0L-real.epsilon) == -1.0 ); 538 assert( nextUp(-2.0L) == -2.0 + real.epsilon); 539 static assert( nextUp(-real.infinity) == -real.max ); 540 static assert( nextUp(-1.0L-real.epsilon) == -1.0 ); 541 static assert( nextUp(-2.0L) == -2.0 + real.epsilon); 542 // subnormals and zero 543 assert( nextUp(-real.min_normal) == -real.min_normal*(1-real.epsilon) ); 544 assert( nextUp(-real.min_normal*(1-real.epsilon)) == -real.min_normal*(1-2*real.epsilon) ); 545 assert( isIdentical(-0.0L, nextUp(-real.min_normal*real.epsilon)) ); 546 assert( nextUp(-0.0L) == real.min_normal*real.epsilon ); 547 assert( nextUp(0.0L) == real.min_normal*real.epsilon ); 548 assert( nextUp(real.min_normal*(1-real.epsilon)) == real.min_normal ); 549 assert( nextUp(real.min_normal) == real.min_normal*(1+real.epsilon) ); 550 static assert( nextUp(-real.min_normal) == -real.min_normal*(1-real.epsilon) ); 551 static assert( nextUp(-real.min_normal*(1-real.epsilon)) == -real.min_normal*(1-2*real.epsilon) ); 552 static assert( -0.0L is nextUp(-real.min_normal*real.epsilon) ); 553 static assert( nextUp(-0.0L) == real.min_normal*real.epsilon ); 554 static assert( nextUp(0.0L) == real.min_normal*real.epsilon ); 555 static assert( nextUp(real.min_normal*(1-real.epsilon)) == real.min_normal ); 556 static assert( nextUp(real.min_normal) == real.min_normal*(1+real.epsilon) ); 557 // positive numbers 558 assert( nextUp(1.0L) == 1.0 + real.epsilon ); 559 assert( nextUp(2.0L-real.epsilon) == 2.0 ); 560 assert( nextUp(real.max) == real.infinity ); 561 assert( nextUp(real.infinity)==real.infinity ); 562 static assert( nextUp(1.0L) == 1.0 + real.epsilon ); 563 static assert( nextUp(2.0L-real.epsilon) == 2.0 ); 564 static assert( nextUp(real.max) == real.infinity ); 565 static assert( nextUp(real.infinity)==real.infinity ); 566 // ctfe near double.max boundary 567 static assert(nextUp(nextDown(cast(real) double.max)) == cast(real) double.max); 568 } 569 570 double n = NaN(0xABC); 571 assert(isIdentical(nextUp(n), n)); 572 // negative numbers 573 assert( nextUp(-double.infinity) == -double.max ); 574 assert( nextUp(-1-double.epsilon) == -1.0 ); 575 assert( nextUp(-2.0) == -2.0 + double.epsilon); 576 // subnormals and zero 577 578 assert( nextUp(-double.min_normal) == -double.min_normal*(1-double.epsilon) ); 579 assert( nextUp(-double.min_normal*(1-double.epsilon)) == -double.min_normal*(1-2*double.epsilon) ); 580 assert( isIdentical(-0.0, nextUp(-double.min_normal*double.epsilon)) ); 581 assert( nextUp(0.0) == double.min_normal*double.epsilon ); 582 assert( nextUp(-0.0) == double.min_normal*double.epsilon ); 583 assert( nextUp(double.min_normal*(1-double.epsilon)) == double.min_normal ); 584 assert( nextUp(double.min_normal) == double.min_normal*(1+double.epsilon) ); 585 // positive numbers 586 assert( nextUp(1.0) == 1.0 + double.epsilon ); 587 assert( nextUp(2.0-double.epsilon) == 2.0 ); 588 assert( nextUp(double.max) == double.infinity ); 589 590 float fn = NaN(0xABC); 591 assert(isIdentical(nextUp(fn), fn)); 592 float f = -float.min_normal*(1-float.epsilon); 593 float f1 = -float.min_normal; 594 assert( nextUp(f1) == f); 595 f = 1.0f+float.epsilon; 596 f1 = 1.0f; 597 assert( nextUp(f1) == f ); 598 f1 = -0.0f; 599 assert( nextUp(f1) == float.min_normal*float.epsilon); 600 assert( nextUp(float.infinity)==float.infinity ); 601 602 assert(nextDown(1.0L+real.epsilon)==1.0); 603 assert(nextDown(1.0+double.epsilon)==1.0); 604 f = 1.0f+float.epsilon; 605 assert(nextDown(f)==1.0); 606 assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0); 607 608 // CTFE 609 610 enum double ctfe_n = NaN(0xABC); 611 //static assert(isIdentical(nextUp(ctfe_n), ctfe_n)); // FIXME: https://issues.dlang.org/show_bug.cgi?id=20197 612 static assert(nextUp(double.nan) is double.nan); 613 // negative numbers 614 static assert( nextUp(-double.infinity) == -double.max ); 615 static assert( nextUp(-1-double.epsilon) == -1.0 ); 616 static assert( nextUp(-2.0) == -2.0 + double.epsilon); 617 // subnormals and zero 618 619 static assert( nextUp(-double.min_normal) == -double.min_normal*(1-double.epsilon) ); 620 static assert( nextUp(-double.min_normal*(1-double.epsilon)) == -double.min_normal*(1-2*double.epsilon) ); 621 static assert( -0.0 is nextUp(-double.min_normal*double.epsilon) ); 622 static assert( nextUp(0.0) == double.min_normal*double.epsilon ); 623 static assert( nextUp(-0.0) == double.min_normal*double.epsilon ); 624 static assert( nextUp(double.min_normal*(1-double.epsilon)) == double.min_normal ); 625 static assert( nextUp(double.min_normal) == double.min_normal*(1+double.epsilon) ); 626 // positive numbers 627 static assert( nextUp(1.0) == 1.0 + double.epsilon ); 628 static assert( nextUp(2.0-double.epsilon) == 2.0 ); 629 static assert( nextUp(double.max) == double.infinity ); 630 631 enum float ctfe_fn = NaN(0xABC); 632 //static assert(isIdentical(nextUp(ctfe_fn), ctfe_fn)); // FIXME: https://issues.dlang.org/show_bug.cgi?id=20197 633 static assert(nextUp(float.nan) is float.nan); 634 static assert(nextUp(-float.min_normal) == -float.min_normal*(1-float.epsilon)); 635 static assert(nextUp(1.0f) == 1.0f+float.epsilon); 636 static assert(nextUp(-0.0f) == float.min_normal*float.epsilon); 637 static assert(nextUp(float.infinity)==float.infinity); 638 static assert(nextDown(1.0L+real.epsilon)==1.0); 639 static assert(nextDown(1.0+double.epsilon)==1.0); 640 static assert(nextDown(1.0f+float.epsilon)==1.0); 641 static assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0); 642 } 643 644 645 646 /****************************************** 647 * Calculates the next representable value after x in the direction of y. 648 * 649 * If y > x, the result will be the next largest floating-point value; 650 * if y < x, the result will be the next smallest value. 651 * If x == y, the result is y. 652 * If x or y is a NaN, the result is a NaN. 653 * 654 * Remarks: 655 * This function is not generally very useful; it's almost always better to use 656 * the faster functions nextUp() or nextDown() instead. 657 * 658 * The FE_INEXACT and FE_OVERFLOW exceptions will be raised if x is finite and 659 * the function result is infinite. The FE_INEXACT and FE_UNDERFLOW 660 * exceptions will be raised if the function value is subnormal, and x is 661 * not equal to y. 662 */ 663 T nextafter(T)(const T x, const T y) @safe pure nothrow @nogc 664 { 665 import std.math.traits : isNaN; 666 667 if (x == y || isNaN(y)) 668 { 669 return y; 670 } 671 672 if (isNaN(x)) 673 { 674 return x; 675 } 676 677 return ((y>x) ? nextUp(x) : nextDown(x)); 678 } 679 680 /// 681 @safe pure nothrow @nogc unittest 682 { 683 import std.math.traits : isNaN; 684 685 float a = 1; 686 assert(is(typeof(nextafter(a, a)) == float)); 687 assert(nextafter(a, a.infinity) > a); 688 assert(isNaN(nextafter(a, a.nan))); 689 assert(isNaN(nextafter(a.nan, a))); 690 691 double b = 2; 692 assert(is(typeof(nextafter(b, b)) == double)); 693 assert(nextafter(b, b.infinity) > b); 694 assert(isNaN(nextafter(b, b.nan))); 695 assert(isNaN(nextafter(b.nan, b))); 696 697 real c = 3; 698 assert(is(typeof(nextafter(c, c)) == real)); 699 assert(nextafter(c, c.infinity) > c); 700 assert(isNaN(nextafter(c, c.nan))); 701 assert(isNaN(nextafter(c.nan, c))); 702 } 703 704 @safe pure nothrow @nogc unittest 705 { 706 import std.math.traits : isNaN, signbit; 707 708 // CTFE 709 enum float a = 1; 710 static assert(is(typeof(nextafter(a, a)) == float)); 711 static assert(nextafter(a, a.infinity) > a); 712 static assert(isNaN(nextafter(a, a.nan))); 713 static assert(isNaN(nextafter(a.nan, a))); 714 715 enum double b = 2; 716 static assert(is(typeof(nextafter(b, b)) == double)); 717 static assert(nextafter(b, b.infinity) > b); 718 static assert(isNaN(nextafter(b, b.nan))); 719 static assert(isNaN(nextafter(b.nan, b))); 720 721 enum real c = 3; 722 static assert(is(typeof(nextafter(c, c)) == real)); 723 static assert(nextafter(c, c.infinity) > c); 724 static assert(isNaN(nextafter(c, c.nan))); 725 static assert(isNaN(nextafter(c.nan, c))); 726 727 enum real negZero = nextafter(+0.0L, -0.0L); 728 static assert(negZero == -0.0L); 729 static assert(signbit(negZero)); 730 731 static assert(nextafter(c, c) == c); 732 } 733 734 //real nexttoward(real x, real y) { return core.stdc.math.nexttowardl(x, y); } 735 736 /** 737 * Returns the positive difference between x and y. 738 * 739 * Equivalent to `fmax(x-y, 0)`. 740 * 741 * Returns: 742 * $(TABLE_SV 743 * $(TR $(TH x, y) $(TH fdim(x, y))) 744 * $(TR $(TD x $(GT) y) $(TD x - y)) 745 * $(TR $(TD x $(LT)= y) $(TD +0.0)) 746 * ) 747 */ 748 real fdim(real x, real y) @safe pure nothrow @nogc 749 { 750 return (x < y) ? +0.0 : x - y; 751 } 752 753 /// 754 @safe pure nothrow @nogc unittest 755 { 756 import std.math.traits : isNaN; 757 758 assert(fdim(2.0, 0.0) == 2.0); 759 assert(fdim(-2.0, 0.0) == 0.0); 760 assert(fdim(real.infinity, 2.0) == real.infinity); 761 assert(isNaN(fdim(real.nan, 2.0))); 762 assert(isNaN(fdim(2.0, real.nan))); 763 assert(isNaN(fdim(real.nan, real.nan))); 764 } 765 766 /** 767 * Returns the larger of `x` and `y`. 768 * 769 * If one of the arguments is a `NaN`, the other is returned. 770 * 771 * See_Also: $(REF max, std,algorithm,comparison) is faster because it does not perform the `isNaN` test. 772 */ 773 F fmax(F)(const F x, const F y) @safe pure nothrow @nogc 774 if (__traits(isFloating, F)) 775 { 776 import std.math.traits : isNaN; 777 778 // Do the more predictable test first. Generates 0 branches with ldc and 1 branch with gdc. 779 // See https://godbolt.org/z/erxrW9 780 if (isNaN(x)) return y; 781 return y > x ? y : x; 782 } 783 784 /// 785 @safe pure nothrow @nogc unittest 786 { 787 import std.meta : AliasSeq; 788 static foreach (F; AliasSeq!(float, double, real)) 789 { 790 assert(fmax(F(0.0), F(2.0)) == 2.0); 791 assert(fmax(F(-2.0), 0.0) == F(0.0)); 792 assert(fmax(F.infinity, F(2.0)) == F.infinity); 793 assert(fmax(F.nan, F(2.0)) == F(2.0)); 794 assert(fmax(F(2.0), F.nan) == F(2.0)); 795 } 796 } 797 798 /** 799 * Returns the smaller of `x` and `y`. 800 * 801 * If one of the arguments is a `NaN`, the other is returned. 802 * 803 * See_Also: $(REF min, std,algorithm,comparison) is faster because it does not perform the `isNaN` test. 804 */ 805 F fmin(F)(const F x, const F y) @safe pure nothrow @nogc 806 if (__traits(isFloating, F)) 807 { 808 import std.math.traits : isNaN; 809 810 // Do the more predictable test first. Generates 0 branches with ldc and 1 branch with gdc. 811 // See https://godbolt.org/z/erxrW9 812 if (isNaN(x)) return y; 813 return y < x ? y : x; 814 } 815 816 /// 817 @safe pure nothrow @nogc unittest 818 { 819 import std.meta : AliasSeq; 820 static foreach (F; AliasSeq!(float, double, real)) 821 { 822 assert(fmin(F(0.0), F(2.0)) == 0.0); 823 assert(fmin(F(-2.0), F(0.0)) == -2.0); 824 assert(fmin(F.infinity, F(2.0)) == 2.0); 825 assert(fmin(F.nan, F(2.0)) == 2.0); 826 assert(fmin(F(2.0), F.nan) == 2.0); 827 } 828 } 829 830 /************************************** 831 * Returns (x * y) + z, rounding only once according to the 832 * current rounding mode. 833 * 834 * BUGS: Not currently implemented - rounds twice. 835 */ 836 pragma(inline, true) 837 real fma(real x, real y, real z) @safe pure nothrow @nogc { return (x * y) + z; } 838 839 /// 840 @safe pure nothrow @nogc unittest 841 { 842 assert(fma(0.0, 2.0, 2.0) == 2.0); 843 assert(fma(2.0, 2.0, 2.0) == 6.0); 844 assert(fma(real.infinity, 2.0, 2.0) == real.infinity); 845 assert(fma(real.nan, 2.0, 2.0) is real.nan); 846 assert(fma(2.0, 2.0, real.nan) is real.nan); 847 } 848 849 /************************************** 850 * To what precision is x equal to y? 851 * 852 * Returns: the number of mantissa bits which are equal in x and y. 853 * eg, 0x1.F8p+60 and 0x1.F1p+60 are equal to 5 bits of precision. 854 * 855 * $(TABLE_SV 856 * $(TR $(TH x) $(TH y) $(TH feqrel(x, y))) 857 * $(TR $(TD x) $(TD x) $(TD real.mant_dig)) 858 * $(TR $(TD x) $(TD $(GT)= 2*x) $(TD 0)) 859 * $(TR $(TD x) $(TD $(LT)= x/2) $(TD 0)) 860 * $(TR $(TD $(NAN)) $(TD any) $(TD 0)) 861 * $(TR $(TD any) $(TD $(NAN)) $(TD 0)) 862 * ) 863 */ 864 int feqrel(X)(const X x, const X y) @trusted pure nothrow @nogc 865 if (isFloatingPoint!(X)) 866 { 867 import std.math.traits : floatTraits, RealFormat; 868 import core.math : fabs; 869 870 /* Public Domain. Author: Don Clugston, 18 Aug 2005. 871 */ 872 alias F = floatTraits!(X); 873 static if (F.realFormat == RealFormat.ieeeSingle 874 || F.realFormat == RealFormat.ieeeDouble 875 || F.realFormat == RealFormat.ieeeExtended 876 || F.realFormat == RealFormat.ieeeExtended53 877 || F.realFormat == RealFormat.ieeeQuadruple) 878 { 879 if (x == y) 880 return X.mant_dig; // ensure diff != 0, cope with INF. 881 882 Unqual!X diff = fabs(x - y); 883 884 ushort *pa = cast(ushort *)(&x); 885 ushort *pb = cast(ushort *)(&y); 886 ushort *pd = cast(ushort *)(&diff); 887 888 889 // The difference in abs(exponent) between x or y and abs(x-y) 890 // is equal to the number of significand bits of x which are 891 // equal to y. If negative, x and y have different exponents. 892 // If positive, x and y are equal to 'bitsdiff' bits. 893 // AND with 0x7FFF to form the absolute value. 894 // To avoid out-by-1 errors, we subtract 1 so it rounds down 895 // if the exponents were different. This means 'bitsdiff' is 896 // always 1 lower than we want, except that if bitsdiff == 0, 897 // they could have 0 or 1 bits in common. 898 899 int bitsdiff = ((( (pa[F.EXPPOS_SHORT] & F.EXPMASK) 900 + (pb[F.EXPPOS_SHORT] & F.EXPMASK) 901 - (1 << F.EXPSHIFT)) >> 1) 902 - (pd[F.EXPPOS_SHORT] & F.EXPMASK)) >> F.EXPSHIFT; 903 if ( (pd[F.EXPPOS_SHORT] & F.EXPMASK) == 0) 904 { // Difference is subnormal 905 // For subnormals, we need to add the number of zeros that 906 // lie at the start of diff's significand. 907 // We do this by multiplying by 2^^real.mant_dig 908 diff *= F.RECIP_EPSILON; 909 return bitsdiff + X.mant_dig - ((pd[F.EXPPOS_SHORT] & F.EXPMASK) >> F.EXPSHIFT); 910 } 911 912 if (bitsdiff > 0) 913 return bitsdiff + 1; // add the 1 we subtracted before 914 915 // Avoid out-by-1 errors when factor is almost 2. 916 if (bitsdiff == 0 917 && ((pa[F.EXPPOS_SHORT] ^ pb[F.EXPPOS_SHORT]) & F.EXPMASK) == 0) 918 { 919 return 1; 920 } else return 0; 921 } 922 else 923 { 924 static assert(false, "Not implemented for this architecture"); 925 } 926 } 927 928 /// 929 @safe pure unittest 930 { 931 assert(feqrel(2.0, 2.0) == 53); 932 assert(feqrel(2.0f, 2.0f) == 24); 933 assert(feqrel(2.0, double.nan) == 0); 934 935 // Test that numbers are within n digits of each 936 // other by testing if feqrel > n * log2(10) 937 938 // five digits 939 assert(feqrel(2.0, 2.00001) > 16); 940 // ten digits 941 assert(feqrel(2.0, 2.00000000001) > 33); 942 } 943 944 @safe pure nothrow @nogc unittest 945 { 946 void testFeqrel(F)() 947 { 948 // Exact equality 949 assert(feqrel(F.max, F.max) == F.mant_dig); 950 assert(feqrel!(F)(0.0, 0.0) == F.mant_dig); 951 assert(feqrel(F.infinity, F.infinity) == F.mant_dig); 952 953 // a few bits away from exact equality 954 F w=1; 955 for (int i = 1; i < F.mant_dig - 1; ++i) 956 { 957 assert(feqrel!(F)(1.0 + w * F.epsilon, 1.0) == F.mant_dig-i); 958 assert(feqrel!(F)(1.0 - w * F.epsilon, 1.0) == F.mant_dig-i); 959 assert(feqrel!(F)(1.0, 1 + (w-1) * F.epsilon) == F.mant_dig - i + 1); 960 w*=2; 961 } 962 963 assert(feqrel!(F)(1.5+F.epsilon, 1.5) == F.mant_dig-1); 964 assert(feqrel!(F)(1.5-F.epsilon, 1.5) == F.mant_dig-1); 965 assert(feqrel!(F)(1.5-F.epsilon, 1.5+F.epsilon) == F.mant_dig-2); 966 967 968 // Numbers that are close 969 assert(feqrel!(F)(0x1.Bp+84, 0x1.B8p+84) == 5); 970 assert(feqrel!(F)(0x1.8p+10, 0x1.Cp+10) == 2); 971 assert(feqrel!(F)(1.5 * (1 - F.epsilon), 1.0L) == 2); 972 assert(feqrel!(F)(1.5, 1.0) == 1); 973 assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1); 974 975 // Factors of 2 976 assert(feqrel(F.max, F.infinity) == 0); 977 assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1); 978 assert(feqrel!(F)(1.0, 2.0) == 0); 979 assert(feqrel!(F)(4.0, 1.0) == 0); 980 981 // Extreme inequality 982 assert(feqrel(F.nan, F.nan) == 0); 983 assert(feqrel!(F)(0.0L, -F.nan) == 0); 984 assert(feqrel(F.nan, F.infinity) == 0); 985 assert(feqrel(F.infinity, -F.infinity) == 0); 986 assert(feqrel(F.max, -F.max) == 0); 987 988 assert(feqrel(F.min_normal / 8, F.min_normal / 17) == 3); 989 990 const F Const = 2; 991 immutable F Immutable = 2; 992 auto Compiles = feqrel(Const, Immutable); 993 } 994 995 assert(feqrel(7.1824L, 7.1824L) == real.mant_dig); 996 997 testFeqrel!(real)(); 998 testFeqrel!(double)(); 999 testFeqrel!(float)(); 1000 } 1001 1002 /** 1003 Computes whether a values is approximately equal to a reference value, 1004 admitting a maximum relative difference, and a maximum absolute difference. 1005 1006 Warning: 1007 This template is considered out-dated. It will be removed from 1008 Phobos in 2.106.0. Please use $(LREF isClose) instead. To achieve 1009 a similar behaviour to `approxEqual(a, b)` use 1010 `isClose(a, b, 1e-2, 1e-5)`. In case of comparing to 0.0, 1011 `isClose(a, b, 0.0, eps)` should be used, where `eps` 1012 represents the accepted deviation from 0.0." 1013 1014 Params: 1015 value = Value to compare. 1016 reference = Reference value. 1017 maxRelDiff = Maximum allowable difference relative to `reference`. 1018 Setting to 0.0 disables this check. Defaults to `1e-2`. 1019 maxAbsDiff = Maximum absolute difference. This is mainly usefull 1020 for comparing values to zero. Setting to 0.0 disables this check. 1021 Defaults to `1e-5`. 1022 1023 Returns: 1024 `true` if `value` is approximately equal to `reference` under 1025 either criterium. It is sufficient, when `value ` satisfies 1026 one of the two criteria. 1027 1028 If one item is a range, and the other is a single value, then 1029 the result is the logical and-ing of calling `approxEqual` on 1030 each element of the ranged item against the single item. If 1031 both items are ranges, then `approxEqual` returns `true` if 1032 and only if the ranges have the same number of elements and if 1033 `approxEqual` evaluates to `true` for each pair of elements. 1034 1035 See_Also: 1036 Use $(LREF feqrel) to get the number of equal bits in the mantissa. 1037 */ 1038 deprecated("approxEqual will be removed in 2.106.0. Please use isClose instead.") 1039 bool approxEqual(T, U, V)(T value, U reference, V maxRelDiff = 1e-2, V maxAbsDiff = 1e-5) 1040 { 1041 import core.math : fabs; 1042 import std.range.primitives : empty, front, isInputRange, popFront; 1043 static if (isInputRange!T) 1044 { 1045 static if (isInputRange!U) 1046 { 1047 // Two ranges 1048 for (;; value.popFront(), reference.popFront()) 1049 { 1050 if (value.empty) return reference.empty; 1051 if (reference.empty) return value.empty; 1052 if (!approxEqual(value.front, reference.front, maxRelDiff, maxAbsDiff)) 1053 return false; 1054 } 1055 } 1056 else static if (isIntegral!U) 1057 { 1058 // convert reference to real 1059 return approxEqual(value, real(reference), maxRelDiff, maxAbsDiff); 1060 } 1061 else 1062 { 1063 // value is range, reference is number 1064 for (; !value.empty; value.popFront()) 1065 { 1066 if (!approxEqual(value.front, reference, maxRelDiff, maxAbsDiff)) 1067 return false; 1068 } 1069 return true; 1070 } 1071 } 1072 else 1073 { 1074 static if (isInputRange!U) 1075 { 1076 // value is number, reference is range 1077 for (; !reference.empty; reference.popFront()) 1078 { 1079 if (!approxEqual(value, reference.front, maxRelDiff, maxAbsDiff)) 1080 return false; 1081 } 1082 return true; 1083 } 1084 else static if (isIntegral!T || isIntegral!U) 1085 { 1086 // convert both value and reference to real 1087 return approxEqual(real(value), real(reference), maxRelDiff, maxAbsDiff); 1088 } 1089 else 1090 { 1091 // two numbers 1092 //static assert(is(T : real) && is(U : real)); 1093 if (reference == 0) 1094 { 1095 return fabs(value) <= maxAbsDiff; 1096 } 1097 static if (is(typeof(value.infinity)) && is(typeof(reference.infinity))) 1098 { 1099 if (value == value.infinity && reference == reference.infinity || 1100 value == -value.infinity && reference == -reference.infinity) return true; 1101 } 1102 return fabs((value - reference) / reference) <= maxRelDiff 1103 || maxAbsDiff != 0 && fabs(value - reference) <= maxAbsDiff; 1104 } 1105 } 1106 } 1107 1108 deprecated @safe pure nothrow unittest 1109 { 1110 assert(approxEqual(1.0, 1.0099)); 1111 assert(!approxEqual(1.0, 1.011)); 1112 assert(approxEqual(0.00001, 0.0)); 1113 assert(!approxEqual(0.00002, 0.0)); 1114 1115 assert(approxEqual(3.0, [3, 3.01, 2.99])); // several reference values is strange 1116 assert(approxEqual([3, 3.01, 2.99], 3.0)); // better 1117 1118 float[] arr1 = [ 1.0, 2.0, 3.0 ]; 1119 double[] arr2 = [ 1.001, 1.999, 3 ]; 1120 assert(approxEqual(arr1, arr2)); 1121 } 1122 1123 deprecated @safe pure nothrow unittest 1124 { 1125 // relative comparison depends on reference, make sure proper 1126 // side is used when comparing range to single value. Based on 1127 // https://issues.dlang.org/show_bug.cgi?id=15763 1128 auto a = [2e-3 - 1e-5]; 1129 auto b = 2e-3 + 1e-5; 1130 assert(a[0].approxEqual(b)); 1131 assert(!b.approxEqual(a[0])); 1132 assert(a.approxEqual(b)); 1133 assert(!b.approxEqual(a)); 1134 } 1135 1136 deprecated @safe pure nothrow @nogc unittest 1137 { 1138 assert(!approxEqual(0.0,1e-15,1e-9,0.0)); 1139 assert(approxEqual(0.0,1e-15,1e-9,1e-9)); 1140 assert(!approxEqual(1.0,3.0,0.0,1.0)); 1141 1142 assert(approxEqual(1.00000000099,1.0,1e-9,0.0)); 1143 assert(!approxEqual(1.0000000011,1.0,1e-9,0.0)); 1144 } 1145 1146 deprecated @safe pure nothrow @nogc unittest 1147 { 1148 // maybe unintuitive behavior 1149 assert(approxEqual(1000.0,1010.0)); 1150 assert(approxEqual(9_090_000_000.0,9_000_000_000.0)); 1151 assert(approxEqual(0.0,1e30,1.0)); 1152 assert(approxEqual(0.00001,1e-30)); 1153 assert(!approxEqual(-1e-30,1e-30,1e-2,0.0)); 1154 } 1155 1156 deprecated @safe pure nothrow @nogc unittest 1157 { 1158 int a = 10; 1159 assert(approxEqual(10, a)); 1160 1161 assert(!approxEqual(3, 0)); 1162 assert(approxEqual(3, 3)); 1163 assert(approxEqual(3.0, 3)); 1164 assert(approxEqual(3, 3.0)); 1165 1166 assert(approxEqual(0.0,0.0)); 1167 assert(approxEqual(-0.0,0.0)); 1168 assert(approxEqual(0.0f,0.0)); 1169 } 1170 1171 deprecated @safe pure nothrow @nogc unittest 1172 { 1173 real num = real.infinity; 1174 assert(num == real.infinity); 1175 assert(approxEqual(num, real.infinity)); 1176 num = -real.infinity; 1177 assert(num == -real.infinity); 1178 assert(approxEqual(num, -real.infinity)); 1179 1180 assert(!approxEqual(1,real.nan)); 1181 assert(!approxEqual(real.nan,real.max)); 1182 assert(!approxEqual(real.nan,real.nan)); 1183 } 1184 1185 deprecated @safe pure nothrow unittest 1186 { 1187 assert(!approxEqual([1.0,2.0,3.0],[1.0,2.0])); 1188 assert(!approxEqual([1.0,2.0],[1.0,2.0,3.0])); 1189 1190 assert(approxEqual!(real[],real[])([],[])); 1191 assert(approxEqual(cast(real[])[],cast(real[])[])); 1192 } 1193 1194 1195 /** 1196 Computes whether two values are approximately equal, admitting a maximum 1197 relative difference, and a maximum absolute difference. 1198 1199 Params: 1200 lhs = First item to compare. 1201 rhs = Second item to compare. 1202 maxRelDiff = Maximum allowable relative difference. 1203 Setting to 0.0 disables this check. Default depends on the type of 1204 `lhs` and `rhs`: It is approximately half the number of decimal digits of 1205 precision of the smaller type. 1206 maxAbsDiff = Maximum absolute difference. This is mainly usefull 1207 for comparing values to zero. Setting to 0.0 disables this check. 1208 Defaults to `0.0`. 1209 1210 Returns: 1211 `true` if the two items are approximately equal under either criterium. 1212 It is sufficient, when `value ` satisfies one of the two criteria. 1213 1214 If one item is a range, and the other is a single value, then 1215 the result is the logical and-ing of calling `isClose` on 1216 each element of the ranged item against the single item. If 1217 both items are ranges, then `isClose` returns `true` if 1218 and only if the ranges have the same number of elements and if 1219 `isClose` evaluates to `true` for each pair of elements. 1220 1221 See_Also: 1222 Use $(LREF feqrel) to get the number of equal bits in the mantissa. 1223 */ 1224 bool isClose(T, U, V = CommonType!(FloatingPointBaseType!T,FloatingPointBaseType!U)) 1225 (T lhs, U rhs, V maxRelDiff = CommonDefaultFor!(T,U), V maxAbsDiff = 0.0) 1226 { 1227 import std.range.primitives : empty, front, isInputRange, popFront; 1228 import std.complex : Complex; 1229 static if (isInputRange!T) 1230 { 1231 static if (isInputRange!U) 1232 { 1233 // Two ranges 1234 for (;; lhs.popFront(), rhs.popFront()) 1235 { 1236 if (lhs.empty) return rhs.empty; 1237 if (rhs.empty) return lhs.empty; 1238 if (!isClose(lhs.front, rhs.front, maxRelDiff, maxAbsDiff)) 1239 return false; 1240 } 1241 } 1242 else 1243 { 1244 // lhs is range, rhs is number 1245 for (; !lhs.empty; lhs.popFront()) 1246 { 1247 if (!isClose(lhs.front, rhs, maxRelDiff, maxAbsDiff)) 1248 return false; 1249 } 1250 return true; 1251 } 1252 } 1253 else static if (isInputRange!U) 1254 { 1255 // lhs is number, rhs is range 1256 for (; !rhs.empty; rhs.popFront()) 1257 { 1258 if (!isClose(lhs, rhs.front, maxRelDiff, maxAbsDiff)) 1259 return false; 1260 } 1261 return true; 1262 } 1263 else static if (is(T TE == Complex!TE)) 1264 { 1265 static if (is(U UE == Complex!UE)) 1266 { 1267 // Two complex numbers 1268 return isClose(lhs.re, rhs.re, maxRelDiff, maxAbsDiff) 1269 && isClose(lhs.im, rhs.im, maxRelDiff, maxAbsDiff); 1270 } 1271 else 1272 { 1273 // lhs is complex, rhs is number 1274 return isClose(lhs.re, rhs, maxRelDiff, maxAbsDiff) 1275 && isClose(lhs.im, 0.0, maxRelDiff, maxAbsDiff); 1276 } 1277 } 1278 else static if (is(U UE == Complex!UE)) 1279 { 1280 // lhs is number, rhs is complex 1281 return isClose(lhs, rhs.re, maxRelDiff, maxAbsDiff) 1282 && isClose(0.0, rhs.im, maxRelDiff, maxAbsDiff); 1283 } 1284 else 1285 { 1286 // two numbers 1287 if (lhs == rhs) return true; 1288 1289 static if (is(typeof(lhs.infinity))) 1290 if (lhs == lhs.infinity || lhs == -lhs.infinity) 1291 return false; 1292 static if (is(typeof(rhs.infinity))) 1293 if (rhs == rhs.infinity || rhs == -rhs.infinity) 1294 return false; 1295 1296 import std.math.algebraic : abs; 1297 1298 auto diff = abs(lhs - rhs); 1299 1300 return diff <= maxRelDiff*abs(lhs) 1301 || diff <= maxRelDiff*abs(rhs) 1302 || diff <= maxAbsDiff; 1303 } 1304 } 1305 1306 /// 1307 @safe pure nothrow @nogc unittest 1308 { 1309 assert(isClose(1.0,0.999_999_999)); 1310 assert(isClose(0.001, 0.000_999_999_999)); 1311 assert(isClose(1_000_000_000.0,999_999_999.0)); 1312 1313 assert(isClose(17.123_456_789, 17.123_456_78)); 1314 assert(!isClose(17.123_456_789, 17.123_45)); 1315 1316 // use explicit 3rd parameter for less (or more) accuracy 1317 assert(isClose(17.123_456_789, 17.123_45, 1e-6)); 1318 assert(!isClose(17.123_456_789, 17.123_45, 1e-7)); 1319 1320 // use 4th parameter when comparing close to zero 1321 assert(!isClose(1e-100, 0.0)); 1322 assert(isClose(1e-100, 0.0, 0.0, 1e-90)); 1323 assert(!isClose(1e-10, -1e-10)); 1324 assert(isClose(1e-10, -1e-10, 0.0, 1e-9)); 1325 assert(!isClose(1e-300, 1e-298)); 1326 assert(isClose(1e-300, 1e-298, 0.0, 1e-200)); 1327 1328 // different default limits for different floating point types 1329 assert(isClose(1.0f, 0.999_99f)); 1330 assert(!isClose(1.0, 0.999_99)); 1331 static if (real.sizeof > double.sizeof) 1332 assert(!isClose(1.0L, 0.999_999_999L)); 1333 } 1334 1335 /// 1336 @safe pure nothrow unittest 1337 { 1338 assert(isClose([1.0, 2.0, 3.0], [0.999_999_999, 2.000_000_001, 3.0])); 1339 assert(!isClose([1.0, 2.0], [0.999_999_999, 2.000_000_001, 3.0])); 1340 assert(!isClose([1.0, 2.0, 3.0], [0.999_999_999, 2.000_000_001])); 1341 1342 assert(isClose([2.0, 1.999_999_999, 2.000_000_001], 2.0)); 1343 assert(isClose(2.0, [2.0, 1.999_999_999, 2.000_000_001])); 1344 } 1345 1346 @safe pure nothrow unittest 1347 { 1348 assert(!isClose([1.0, 2.0, 3.0], [0.999_999_999, 3.0, 3.0])); 1349 assert(!isClose([2.0, 1.999_999, 2.000_000_001], 2.0)); 1350 assert(!isClose(2.0, [2.0, 1.999_999_999, 2.000_000_999])); 1351 } 1352 1353 @safe pure nothrow @nogc unittest 1354 { 1355 immutable a = 1.00001f; 1356 const b = 1.000019; 1357 assert(isClose(a,b)); 1358 1359 assert(isClose(1.00001f,1.000019f)); 1360 assert(isClose(1.00001f,1.000019)); 1361 assert(isClose(1.00001,1.000019f)); 1362 assert(!isClose(1.00001,1.000019)); 1363 1364 real a1 = 1e-300L; 1365 real a2 = a1.nextUp; 1366 assert(isClose(a1,a2)); 1367 } 1368 1369 @safe pure nothrow unittest 1370 { 1371 float[] arr1 = [ 1.0, 2.0, 3.0 ]; 1372 double[] arr2 = [ 1.00001, 1.99999, 3 ]; 1373 assert(isClose(arr1, arr2)); 1374 } 1375 1376 @safe pure nothrow @nogc unittest 1377 { 1378 assert(!isClose(1000.0,1010.0)); 1379 assert(!isClose(9_090_000_000.0,9_000_000_000.0)); 1380 assert(isClose(0.0,1e30,1.0)); 1381 assert(!isClose(0.00001,1e-30)); 1382 assert(!isClose(-1e-30,1e-30,1e-2,0.0)); 1383 } 1384 1385 @safe pure nothrow @nogc unittest 1386 { 1387 assert(!isClose(3, 0)); 1388 assert(isClose(3, 3)); 1389 assert(isClose(3.0, 3)); 1390 assert(isClose(3, 3.0)); 1391 1392 assert(isClose(0.0,0.0)); 1393 assert(isClose(-0.0,0.0)); 1394 assert(isClose(0.0f,0.0)); 1395 } 1396 1397 @safe pure nothrow @nogc unittest 1398 { 1399 real num = real.infinity; 1400 assert(num == real.infinity); 1401 assert(isClose(num, real.infinity)); 1402 num = -real.infinity; 1403 assert(num == -real.infinity); 1404 assert(isClose(num, -real.infinity)); 1405 1406 assert(!isClose(1,real.nan)); 1407 assert(!isClose(real.nan,real.max)); 1408 assert(!isClose(real.nan,real.nan)); 1409 1410 assert(!isClose(-double.infinity, 1)); 1411 } 1412 1413 @safe pure nothrow @nogc unittest 1414 { 1415 assert(isClose!(real[],real[],real)([],[])); 1416 assert(isClose(cast(real[])[],cast(real[])[])); 1417 } 1418 1419 @safe pure nothrow @nogc unittest 1420 { 1421 import std.conv : to; 1422 1423 float f = 31.79f; 1424 double d = 31.79; 1425 double f2d = f.to!double; 1426 1427 assert(isClose(f,f2d)); 1428 assert(!isClose(d,f2d)); 1429 } 1430 1431 @safe pure nothrow @nogc unittest 1432 { 1433 import std.conv : to; 1434 1435 double d = 31.79; 1436 float f = d.to!float; 1437 double f2d = f.to!double; 1438 1439 assert(isClose(f,f2d)); 1440 assert(!isClose(d,f2d)); 1441 assert(isClose(d,f2d,1e-4)); 1442 } 1443 1444 package(std.math) template CommonDefaultFor(T,U) 1445 { 1446 import std.algorithm.comparison : min; 1447 1448 alias baseT = FloatingPointBaseType!T; 1449 alias baseU = FloatingPointBaseType!U; 1450 1451 enum CommonType!(baseT, baseU) CommonDefaultFor = 10.0L ^^ -((min(baseT.dig, baseU.dig) + 1) / 2 + 1); 1452 } 1453 1454 private template FloatingPointBaseType(T) 1455 { 1456 import std.range.primitives : ElementType; 1457 static if (isFloatingPoint!T) 1458 { 1459 alias FloatingPointBaseType = Unqual!T; 1460 } 1461 else static if (isFloatingPoint!(ElementType!(Unqual!T))) 1462 { 1463 alias FloatingPointBaseType = Unqual!(ElementType!(Unqual!T)); 1464 } 1465 else 1466 { 1467 alias FloatingPointBaseType = real; 1468 } 1469 } 1470 1471 /*********************************** 1472 * Defines a total order on all floating-point numbers. 1473 * 1474 * The order is defined as follows: 1475 * $(UL 1476 * $(LI All numbers in [-$(INFIN), +$(INFIN)] are ordered 1477 * the same way as by built-in comparison, with the exception of 1478 * -0.0, which is less than +0.0;) 1479 * $(LI If the sign bit is set (that is, it's 'negative'), $(NAN) is less 1480 * than any number; if the sign bit is not set (it is 'positive'), 1481 * $(NAN) is greater than any number;) 1482 * $(LI $(NAN)s of the same sign are ordered by the payload ('negative' 1483 * ones - in reverse order).) 1484 * ) 1485 * 1486 * Returns: 1487 * negative value if `x` precedes `y` in the order specified above; 1488 * 0 if `x` and `y` are identical, and positive value otherwise. 1489 * 1490 * See_Also: 1491 * $(MYREF isIdentical) 1492 * Standards: Conforms to IEEE 754-2008 1493 */ 1494 int cmp(T)(const(T) x, const(T) y) @nogc @trusted pure nothrow 1495 if (isFloatingPoint!T) 1496 { 1497 import std.math.traits : floatTraits, RealFormat; 1498 1499 alias F = floatTraits!T; 1500 1501 static if (F.realFormat == RealFormat.ieeeSingle 1502 || F.realFormat == RealFormat.ieeeDouble) 1503 { 1504 static if (T.sizeof == 4) 1505 alias UInt = uint; 1506 else 1507 alias UInt = ulong; 1508 1509 union Repainter 1510 { 1511 T number; 1512 UInt bits; 1513 } 1514 1515 enum msb = ~(UInt.max >>> 1); 1516 1517 import std.typecons : Tuple; 1518 Tuple!(Repainter, Repainter) vars = void; 1519 vars[0].number = x; 1520 vars[1].number = y; 1521 1522 foreach (ref var; vars) 1523 if (var.bits & msb) 1524 var.bits = ~var.bits; 1525 else 1526 var.bits |= msb; 1527 1528 if (vars[0].bits < vars[1].bits) 1529 return -1; 1530 else if (vars[0].bits > vars[1].bits) 1531 return 1; 1532 else 1533 return 0; 1534 } 1535 else static if (F.realFormat == RealFormat.ieeeExtended53 1536 || F.realFormat == RealFormat.ieeeExtended 1537 || F.realFormat == RealFormat.ieeeQuadruple) 1538 { 1539 static if (F.realFormat == RealFormat.ieeeQuadruple) 1540 alias RemT = ulong; 1541 else 1542 alias RemT = ushort; 1543 1544 struct Bits 1545 { 1546 ulong bulk; 1547 RemT rem; 1548 } 1549 1550 union Repainter 1551 { 1552 T number; 1553 Bits bits; 1554 ubyte[T.sizeof] bytes; 1555 } 1556 1557 import std.typecons : Tuple; 1558 Tuple!(Repainter, Repainter) vars = void; 1559 vars[0].number = x; 1560 vars[1].number = y; 1561 1562 foreach (ref var; vars) 1563 if (var.bytes[F.SIGNPOS_BYTE] & 0x80) 1564 { 1565 var.bits.bulk = ~var.bits.bulk; 1566 var.bits.rem = cast(typeof(var.bits.rem))(-1 - var.bits.rem); // ~var.bits.rem 1567 } 1568 else 1569 { 1570 var.bytes[F.SIGNPOS_BYTE] |= 0x80; 1571 } 1572 1573 version (LittleEndian) 1574 { 1575 if (vars[0].bits.rem < vars[1].bits.rem) 1576 return -1; 1577 else if (vars[0].bits.rem > vars[1].bits.rem) 1578 return 1; 1579 else if (vars[0].bits.bulk < vars[1].bits.bulk) 1580 return -1; 1581 else if (vars[0].bits.bulk > vars[1].bits.bulk) 1582 return 1; 1583 else 1584 return 0; 1585 } 1586 else 1587 { 1588 if (vars[0].bits.bulk < vars[1].bits.bulk) 1589 return -1; 1590 else if (vars[0].bits.bulk > vars[1].bits.bulk) 1591 return 1; 1592 else if (vars[0].bits.rem < vars[1].bits.rem) 1593 return -1; 1594 else if (vars[0].bits.rem > vars[1].bits.rem) 1595 return 1; 1596 else 1597 return 0; 1598 } 1599 } 1600 else 1601 { 1602 // IBM Extended doubledouble does not follow the general 1603 // sign-exponent-significand layout, so has to be handled generically 1604 1605 import std.math.traits : signbit, isNaN; 1606 1607 const int xSign = signbit(x), 1608 ySign = signbit(y); 1609 1610 if (xSign == 1 && ySign == 1) 1611 return cmp(-y, -x); 1612 else if (xSign == 1) 1613 return -1; 1614 else if (ySign == 1) 1615 return 1; 1616 else if (x < y) 1617 return -1; 1618 else if (x == y) 1619 return 0; 1620 else if (x > y) 1621 return 1; 1622 else if (isNaN(x) && !isNaN(y)) 1623 return 1; 1624 else if (isNaN(y) && !isNaN(x)) 1625 return -1; 1626 else if (getNaNPayload(x) < getNaNPayload(y)) 1627 return -1; 1628 else if (getNaNPayload(x) > getNaNPayload(y)) 1629 return 1; 1630 else 1631 return 0; 1632 } 1633 } 1634 1635 /// Most numbers are ordered naturally. 1636 @safe unittest 1637 { 1638 assert(cmp(-double.infinity, -double.max) < 0); 1639 assert(cmp(-double.max, -100.0) < 0); 1640 assert(cmp(-100.0, -0.5) < 0); 1641 assert(cmp(-0.5, 0.0) < 0); 1642 assert(cmp(0.0, 0.5) < 0); 1643 assert(cmp(0.5, 100.0) < 0); 1644 assert(cmp(100.0, double.max) < 0); 1645 assert(cmp(double.max, double.infinity) < 0); 1646 1647 assert(cmp(1.0, 1.0) == 0); 1648 } 1649 1650 /// Positive and negative zeroes are distinct. 1651 @safe unittest 1652 { 1653 assert(cmp(-0.0, +0.0) < 0); 1654 assert(cmp(+0.0, -0.0) > 0); 1655 } 1656 1657 /// Depending on the sign, $(NAN)s go to either end of the spectrum. 1658 @safe unittest 1659 { 1660 assert(cmp(-double.nan, -double.infinity) < 0); 1661 assert(cmp(double.infinity, double.nan) < 0); 1662 assert(cmp(-double.nan, double.nan) < 0); 1663 } 1664 1665 /// $(NAN)s of the same sign are ordered by the payload. 1666 @safe unittest 1667 { 1668 assert(cmp(NaN(10), NaN(20)) < 0); 1669 assert(cmp(-NaN(20), -NaN(10)) < 0); 1670 } 1671 1672 @safe unittest 1673 { 1674 import std.meta : AliasSeq; 1675 static foreach (T; AliasSeq!(float, double, real)) 1676 {{ 1677 T[] values = [-cast(T) NaN(20), -cast(T) NaN(10), -T.nan, -T.infinity, 1678 -T.max, -T.max / 2, T(-16.0), T(-1.0).nextDown, 1679 T(-1.0), T(-1.0).nextUp, 1680 T(-0.5), -T.min_normal, (-T.min_normal).nextUp, 1681 -2 * T.min_normal * T.epsilon, 1682 -T.min_normal * T.epsilon, 1683 T(-0.0), T(0.0), 1684 T.min_normal * T.epsilon, 1685 2 * T.min_normal * T.epsilon, 1686 T.min_normal.nextDown, T.min_normal, T(0.5), 1687 T(1.0).nextDown, T(1.0), 1688 T(1.0).nextUp, T(16.0), T.max / 2, T.max, 1689 T.infinity, T.nan, cast(T) NaN(10), cast(T) NaN(20)]; 1690 1691 foreach (i, x; values) 1692 { 1693 foreach (y; values[i + 1 .. $]) 1694 { 1695 assert(cmp(x, y) < 0); 1696 assert(cmp(y, x) > 0); 1697 } 1698 assert(cmp(x, x) == 0); 1699 } 1700 }} 1701 } 1702 1703 package(std): // not yet public 1704 1705 struct FloatingPointBitpattern(T) 1706 if (isFloatingPoint!T) 1707 { 1708 static if (T.mant_dig <= 64) 1709 { 1710 ulong mantissa; 1711 } 1712 else 1713 { 1714 ulong mantissa_lsb; 1715 ulong mantissa_msb; 1716 } 1717 1718 int exponent; 1719 bool negative; 1720 } 1721 1722 FloatingPointBitpattern!T extractBitpattern(T)(const(T) value) @trusted 1723 if (isFloatingPoint!T) 1724 { 1725 import std.math.traits : floatTraits, RealFormat; 1726 1727 T val = value; 1728 FloatingPointBitpattern!T ret; 1729 1730 alias F = floatTraits!T; 1731 static if (F.realFormat == RealFormat.ieeeExtended) 1732 { 1733 if (__ctfe) 1734 { 1735 import core.math : fabs, ldexp; 1736 import std.math.rounding : floor; 1737 import std.math.traits : isInfinity, isNaN, signbit; 1738 import std.math.exponential : log2; 1739 1740 if (isNaN(val) || isInfinity(val)) 1741 ret.exponent = 32767; 1742 else if (fabs(val) < real.min_normal) 1743 ret.exponent = 0; 1744 else if (fabs(val) >= nextUp(real.max / 2)) 1745 ret.exponent = 32766; 1746 else 1747 ret.exponent = cast(int) (val.fabs.log2.floor() + 16383); 1748 1749 if (ret.exponent == 32767) 1750 { 1751 // NaN or infinity 1752 ret.mantissa = isNaN(val) ? ((1L << 63) - 1) : 0; 1753 } 1754 else 1755 { 1756 auto delta = 16382 + 64 // bias + bits of ulong 1757 - (ret.exponent == 0 ? 1 : ret.exponent); // -1 in case of subnormals 1758 val = ldexp(val, delta); // val *= 2^^delta 1759 1760 ulong tmp = cast(ulong) fabs(val); 1761 if (ret.exponent != 32767 && ret.exponent > 0 && tmp <= ulong.max / 2) 1762 { 1763 // correction, due to log2(val) being rounded up: 1764 ret.exponent--; 1765 val *= 2; 1766 tmp = cast(ulong) fabs(val); 1767 } 1768 1769 ret.mantissa = tmp & long.max; 1770 } 1771 1772 ret.negative = (signbit(val) == 1); 1773 } 1774 else 1775 { 1776 ushort* vs = cast(ushort*) &val; 1777 ret.mantissa = (cast(ulong*) vs)[0] & long.max; 1778 ret.exponent = vs[4] & short.max; 1779 ret.negative = (vs[4] >> 15) & 1; 1780 } 1781 } 1782 else 1783 { 1784 static if (F.realFormat == RealFormat.ieeeSingle) 1785 { 1786 ulong ival = *cast(uint*) &val; 1787 } 1788 else static if (F.realFormat == RealFormat.ieeeDouble) 1789 { 1790 ulong ival = *cast(ulong*) &val; 1791 } 1792 else 1793 { 1794 static assert(false, "Floating point type `" ~ F.realFormat ~ "` not supported."); 1795 } 1796 1797 import std.math.exponential : log2; 1798 enum log2_max_exp = cast(int) log2(T(T.max_exp)); 1799 1800 ret.mantissa = ival & ((1L << (T.mant_dig - 1)) - 1); 1801 ret.exponent = (ival >> (T.mant_dig - 1)) & ((1L << (log2_max_exp + 1)) - 1); 1802 ret.negative = (ival >> (T.mant_dig + log2_max_exp)) & 1; 1803 } 1804 1805 // add leading 1 for normalized values and correct exponent for denormalied values 1806 if (ret.exponent != 0 && ret.exponent != 2 * T.max_exp - 1) 1807 ret.mantissa |= 1L << (T.mant_dig - 1); 1808 else if (ret.exponent == 0) 1809 ret.exponent = 1; 1810 1811 ret.exponent -= T.max_exp - 1; 1812 1813 return ret; 1814 } 1815 1816 @safe pure unittest 1817 { 1818 float f = 1.0f; 1819 auto bp = extractBitpattern(f); 1820 assert(bp.mantissa == 0x80_0000); 1821 assert(bp.exponent == 0); 1822 assert(bp.negative == false); 1823 1824 f = float.max; 1825 bp = extractBitpattern(f); 1826 assert(bp.mantissa == 0xff_ffff); 1827 assert(bp.exponent == 127); 1828 assert(bp.negative == false); 1829 1830 f = -1.5432e-17f; 1831 bp = extractBitpattern(f); 1832 assert(bp.mantissa == 0x8e_55c8); 1833 assert(bp.exponent == -56); 1834 assert(bp.negative == true); 1835 1836 // using double literal due to https://issues.dlang.org/show_bug.cgi?id=20361 1837 f = 2.3822073893521890206e-44; 1838 bp = extractBitpattern(f); 1839 assert(bp.mantissa == 0x00_0011); 1840 assert(bp.exponent == -126); 1841 assert(bp.negative == false); 1842 1843 f = -float.infinity; 1844 bp = extractBitpattern(f); 1845 assert(bp.mantissa == 0); 1846 assert(bp.exponent == 128); 1847 assert(bp.negative == true); 1848 1849 f = float.nan; 1850 bp = extractBitpattern(f); 1851 assert(bp.mantissa != 0); // we don't guarantee payloads 1852 assert(bp.exponent == 128); 1853 assert(bp.negative == false); 1854 } 1855 1856 @safe pure unittest 1857 { 1858 double d = 1.0; 1859 auto bp = extractBitpattern(d); 1860 assert(bp.mantissa == 0x10_0000_0000_0000L); 1861 assert(bp.exponent == 0); 1862 assert(bp.negative == false); 1863 1864 d = double.max; 1865 bp = extractBitpattern(d); 1866 assert(bp.mantissa == 0x1f_ffff_ffff_ffffL); 1867 assert(bp.exponent == 1023); 1868 assert(bp.negative == false); 1869 1870 d = -1.5432e-222; 1871 bp = extractBitpattern(d); 1872 assert(bp.mantissa == 0x11_d9b6_a401_3b04L); 1873 assert(bp.exponent == -737); 1874 assert(bp.negative == true); 1875 1876 d = 0.0.nextUp; 1877 bp = extractBitpattern(d); 1878 assert(bp.mantissa == 0x00_0000_0000_0001L); 1879 assert(bp.exponent == -1022); 1880 assert(bp.negative == false); 1881 1882 d = -double.infinity; 1883 bp = extractBitpattern(d); 1884 assert(bp.mantissa == 0); 1885 assert(bp.exponent == 1024); 1886 assert(bp.negative == true); 1887 1888 d = double.nan; 1889 bp = extractBitpattern(d); 1890 assert(bp.mantissa != 0); // we don't guarantee payloads 1891 assert(bp.exponent == 1024); 1892 assert(bp.negative == false); 1893 } 1894 1895 @safe pure unittest 1896 { 1897 import std.math.traits : floatTraits, RealFormat; 1898 1899 alias F = floatTraits!real; 1900 static if (F.realFormat == RealFormat.ieeeExtended) 1901 { 1902 real r = 1.0L; 1903 auto bp = extractBitpattern(r); 1904 assert(bp.mantissa == 0x8000_0000_0000_0000L); 1905 assert(bp.exponent == 0); 1906 assert(bp.negative == false); 1907 1908 r = real.max; 1909 bp = extractBitpattern(r); 1910 assert(bp.mantissa == 0xffff_ffff_ffff_ffffL); 1911 assert(bp.exponent == 16383); 1912 assert(bp.negative == false); 1913 1914 r = -1.5432e-3333L; 1915 bp = extractBitpattern(r); 1916 assert(bp.mantissa == 0xc768_a2c7_a616_cc22L); 1917 assert(bp.exponent == -11072); 1918 assert(bp.negative == true); 1919 1920 r = 0.0L.nextUp; 1921 bp = extractBitpattern(r); 1922 assert(bp.mantissa == 0x0000_0000_0000_0001L); 1923 assert(bp.exponent == -16382); 1924 assert(bp.negative == false); 1925 1926 r = -float.infinity; 1927 bp = extractBitpattern(r); 1928 assert(bp.mantissa == 0); 1929 assert(bp.exponent == 16384); 1930 assert(bp.negative == true); 1931 1932 r = float.nan; 1933 bp = extractBitpattern(r); 1934 assert(bp.mantissa != 0); // we don't guarantee payloads 1935 assert(bp.exponent == 16384); 1936 assert(bp.negative == false); 1937 1938 r = nextDown(0x1p+16383L); 1939 bp = extractBitpattern(r); 1940 assert(bp.mantissa == 0xffff_ffff_ffff_ffffL); 1941 assert(bp.exponent == 16382); 1942 assert(bp.negative == false); 1943 } 1944 } 1945 1946 @safe pure unittest 1947 { 1948 import std.math.traits : floatTraits, RealFormat; 1949 import std.math.exponential : log2; 1950 1951 alias F = floatTraits!real; 1952 1953 // log2 is broken for x87-reals on some computers in CTFE 1954 // the following test excludes these computers from the test 1955 // (https://issues.dlang.org/show_bug.cgi?id=21757) 1956 enum test = cast(int) log2(3.05e2312L); 1957 static if (F.realFormat == RealFormat.ieeeExtended && test == 7681) 1958 { 1959 enum r1 = 1.0L; 1960 enum bp1 = extractBitpattern(r1); 1961 static assert(bp1.mantissa == 0x8000_0000_0000_0000L); 1962 static assert(bp1.exponent == 0); 1963 static assert(bp1.negative == false); 1964 1965 enum r2 = real.max; 1966 enum bp2 = extractBitpattern(r2); 1967 static assert(bp2.mantissa == 0xffff_ffff_ffff_ffffL); 1968 static assert(bp2.exponent == 16383); 1969 static assert(bp2.negative == false); 1970 1971 enum r3 = -1.5432e-3333L; 1972 enum bp3 = extractBitpattern(r3); 1973 static assert(bp3.mantissa == 0xc768_a2c7_a616_cc22L); 1974 static assert(bp3.exponent == -11072); 1975 static assert(bp3.negative == true); 1976 1977 enum r4 = 0.0L.nextUp; 1978 enum bp4 = extractBitpattern(r4); 1979 static assert(bp4.mantissa == 0x0000_0000_0000_0001L); 1980 static assert(bp4.exponent == -16382); 1981 static assert(bp4.negative == false); 1982 1983 enum r5 = -real.infinity; 1984 enum bp5 = extractBitpattern(r5); 1985 static assert(bp5.mantissa == 0); 1986 static assert(bp5.exponent == 16384); 1987 static assert(bp5.negative == true); 1988 1989 enum r6 = real.nan; 1990 enum bp6 = extractBitpattern(r6); 1991 static assert(bp6.mantissa != 0); // we don't guarantee payloads 1992 static assert(bp6.exponent == 16384); 1993 static assert(bp6.negative == false); 1994 1995 enum r7 = nextDown(0x1p+16383L); 1996 enum bp7 = extractBitpattern(r7); 1997 static assert(bp7.mantissa == 0xffff_ffff_ffff_ffffL); 1998 static assert(bp7.exponent == 16382); 1999 static assert(bp7.negative == false); 2000 } 2001 }