1 // Written in the D programming language.
2 
3 /**
4 This is a submodule of $(MREF std, math).
5 
6 It contains several functions for work with floating point numbers.
7 
8 Copyright: Copyright The D Language Foundation 2000 - 2011.
9 License:   $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
10 Authors:   $(HTTP digitalmars.com, Walter Bright), Don Clugston,
11            Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger
12 Source: $(PHOBOSSRC std/math/operations.d)
13 
14 Macros:
15     TABLE_SV = <table border="1" cellpadding="4" cellspacing="0">
16                <caption>Special Values</caption>
17                $0</table>
18     SVH = $(TR $(TH $1) $(TH $2))
19     SV  = $(TR $(TD $1) $(TD $2))
20     NAN = $(RED NAN)
21     PLUSMN = &plusmn;
22     INFIN = &infin;
23     LT = &lt;
24     GT = &gt;
25  */
26 
27 module std.math.operations;
28 
29 import std.traits : CommonType, isFloatingPoint, isIntegral, Unqual;
30 
31 // Functions for NaN payloads
32 /*
33  * A 'payload' can be stored in the significand of a $(NAN). One bit is required
34  * to distinguish between a quiet and a signalling $(NAN). This leaves 22 bits
35  * of payload for a float; 51 bits for a double; 62 bits for an 80-bit real;
36  * and 111 bits for a 128-bit quad.
37 */
38 /**
39  * Create a quiet $(NAN), storing an integer inside the payload.
40  *
41  * For floats, the largest possible payload is 0x3F_FFFF.
42  * For doubles, it is 0x3_FFFF_FFFF_FFFF.
43  * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF.
44  */
45 real NaN(ulong payload) @trusted pure nothrow @nogc
46 {
47     import std.math.traits : floatTraits, RealFormat;
48 
49     alias F = floatTraits!(real);
50     static if (F.realFormat == RealFormat.ieeeExtended ||
51                F.realFormat == RealFormat.ieeeExtended53)
52     {
53         // real80 (in x86 real format, the implied bit is actually
54         // not implied but a real bit which is stored in the real)
55         ulong v = 3; // implied bit = 1, quiet bit = 1
56     }
57     else
58     {
59         ulong v = 1; // no implied bit. quiet bit = 1
60     }
61     if (__ctfe)
62     {
63         v = 1; // We use a double in CTFE.
64         assert(payload >>> 51 == 0,
65             "Cannot set more than 51 bits of NaN payload in CTFE.");
66     }
67 
68 
69     ulong a = payload;
70 
71     // 22 Float bits
72     ulong w = a & 0x3F_FFFF;
73     a -= w;
74 
75     v <<=22;
76     v |= w;
77     a >>=22;
78 
79     // 29 Double bits
80     v <<=29;
81     w = a & 0xFFF_FFFF;
82     v |= w;
83     a -= w;
84     a >>=29;
85 
86     if (__ctfe)
87     {
88         v |= 0x7FF0_0000_0000_0000;
89         return *cast(double*) &v;
90     }
91     else static if (F.realFormat == RealFormat.ieeeDouble)
92     {
93         v |= 0x7FF0_0000_0000_0000;
94         real x;
95         * cast(ulong *)(&x) = v;
96         return x;
97     }
98     else
99     {
100         v <<=11;
101         a &= 0x7FF;
102         v |= a;
103         real x = real.nan;
104 
105         // Extended real bits
106         static if (F.realFormat == RealFormat.ieeeQuadruple)
107         {
108             v <<= 1; // there's no implicit bit
109 
110             version (LittleEndian)
111             {
112                 *cast(ulong*)(6+cast(ubyte*)(&x)) = v;
113             }
114             else
115             {
116                 *cast(ulong*)(2+cast(ubyte*)(&x)) = v;
117             }
118         }
119         else
120         {
121             *cast(ulong *)(&x) = v;
122         }
123         return x;
124     }
125 }
126 
127 ///
128 @safe @nogc pure nothrow unittest
129 {
130     import std.math.traits : isNaN;
131 
132     real a = NaN(1_000_000);
133     assert(isNaN(a));
134     assert(getNaNPayload(a) == 1_000_000);
135 }
136 
137 @system pure nothrow @nogc unittest // not @safe because taking address of local.
138 {
139     import std.math.traits : floatTraits, RealFormat;
140 
141     static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble)
142     {
143         auto x = NaN(1);
144         auto xl = *cast(ulong*)&x;
145         assert(xl & 0x8_0000_0000_0000UL); //non-signaling bit, bit 52
146         assert((xl & 0x7FF0_0000_0000_0000UL) == 0x7FF0_0000_0000_0000UL); //all exp bits set
147     }
148 }
149 
150 /**
151  * Extract an integral payload from a $(NAN).
152  *
153  * Returns:
154  * the integer payload as a ulong.
155  *
156  * For floats, the largest possible payload is 0x3F_FFFF.
157  * For doubles, it is 0x3_FFFF_FFFF_FFFF.
158  * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF.
159  */
160 ulong getNaNPayload(real x) @trusted pure nothrow @nogc
161 {
162     import std.math.traits : floatTraits, RealFormat;
163 
164     //  assert(isNaN(x));
165     alias F = floatTraits!(real);
166     ulong m = void;
167     if (__ctfe)
168     {
169         double y = x;
170         m = *cast(ulong*) &y;
171         // Make it look like an 80-bit significand.
172         // Skip exponent, and quiet bit
173         m &= 0x0007_FFFF_FFFF_FFFF;
174         m <<= 11;
175     }
176     else static if (F.realFormat == RealFormat.ieeeDouble)
177     {
178         m = *cast(ulong*)(&x);
179         // Make it look like an 80-bit significand.
180         // Skip exponent, and quiet bit
181         m &= 0x0007_FFFF_FFFF_FFFF;
182         m <<= 11;
183     }
184     else static if (F.realFormat == RealFormat.ieeeQuadruple)
185     {
186         version (LittleEndian)
187         {
188             m = *cast(ulong*)(6+cast(ubyte*)(&x));
189         }
190         else
191         {
192             m = *cast(ulong*)(2+cast(ubyte*)(&x));
193         }
194 
195         m >>= 1; // there's no implicit bit
196     }
197     else
198     {
199         m = *cast(ulong*)(&x);
200     }
201 
202     // ignore implicit bit and quiet bit
203 
204     const ulong f = m & 0x3FFF_FF00_0000_0000L;
205 
206     ulong w = f >>> 40;
207             w |= (m & 0x00FF_FFFF_F800L) << (22 - 11);
208             w |= (m & 0x7FF) << 51;
209             return w;
210 }
211 
212 ///
213 @safe @nogc pure nothrow unittest
214 {
215     import std.math.traits : isNaN;
216 
217     real a = NaN(1_000_000);
218     assert(isNaN(a));
219     assert(getNaNPayload(a) == 1_000_000);
220 }
221 
222 @safe @nogc pure nothrow unittest
223 {
224     import std.math.traits : isIdentical, isNaN;
225 
226     enum real a = NaN(1_000_000);
227     static assert(isNaN(a));
228     static assert(getNaNPayload(a) == 1_000_000);
229     real b = NaN(1_000_000);
230     assert(isIdentical(b, a));
231     // The CTFE version of getNaNPayload relies on it being impossible
232     // for a CTFE-constructed NaN to have more than 51 bits of payload.
233     enum nanNaN = NaN(getNaNPayload(real.nan));
234     assert(isIdentical(real.nan, nanNaN));
235     static if (real.init != real.init)
236     {
237         enum initNaN = NaN(getNaNPayload(real.init));
238         assert(isIdentical(real.init, initNaN));
239     }
240 }
241 
242 debug(UnitTest)
243 {
244     @safe pure nothrow @nogc unittest
245     {
246         real nan4 = NaN(0x789_ABCD_EF12_3456);
247         static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended
248                 || floatTraits!(real).realFormat == RealFormat.ieeeQuadruple)
249         {
250             assert(getNaNPayload(nan4) == 0x789_ABCD_EF12_3456);
251         }
252         else
253         {
254             assert(getNaNPayload(nan4) == 0x1_ABCD_EF12_3456);
255         }
256         double nan5 = nan4;
257         assert(getNaNPayload(nan5) == 0x1_ABCD_EF12_3456);
258         float nan6 = nan4;
259         assert(getNaNPayload(nan6) == 0x12_3456);
260         nan4 = NaN(0xFABCD);
261         assert(getNaNPayload(nan4) == 0xFABCD);
262         nan6 = nan4;
263         assert(getNaNPayload(nan6) == 0xFABCD);
264         nan5 = NaN(0x100_0000_0000_3456);
265         assert(getNaNPayload(nan5) == 0x0000_0000_3456);
266     }
267 }
268 
269 /**
270  * Calculate the next largest floating point value after x.
271  *
272  * Return the least number greater than x that is representable as a real;
273  * thus, it gives the next point on the IEEE number line.
274  *
275  *  $(TABLE_SV
276  *    $(SVH x,            nextUp(x)   )
277  *    $(SV  -$(INFIN),    -real.max   )
278  *    $(SV  $(PLUSMN)0.0, real.min_normal*real.epsilon )
279  *    $(SV  real.max,     $(INFIN) )
280  *    $(SV  $(INFIN),     $(INFIN) )
281  *    $(SV  $(NAN),       $(NAN)   )
282  * )
283  */
284 real nextUp(real x) @trusted pure nothrow @nogc
285 {
286     import std.math.traits : floatTraits, RealFormat, MANTISSA_MSB, MANTISSA_LSB;
287 
288     alias F = floatTraits!(real);
289     static if (F.realFormat != RealFormat.ieeeDouble)
290     {
291         if (__ctfe)
292         {
293             if (x == -real.infinity)
294                 return -real.max;
295             if (!(x < real.infinity)) // Infinity or NaN.
296                 return x;
297             real delta;
298             // Start with a decent estimate of delta.
299             if (x <= 0x1.ffffffffffffep+1023 && x >= -double.max)
300             {
301                 const double d = cast(double) x;
302                 delta = (cast(real) nextUp(d) - cast(real) d) * 0x1p-11L;
303                 while (x + (delta * 0x1p-100L) > x)
304                     delta *= 0x1p-100L;
305             }
306             else
307             {
308                 delta = 0x1p960L;
309                 while (!(x + delta > x) && delta < real.max * 0x1p-100L)
310                     delta *= 0x1p100L;
311             }
312             if (x + delta > x)
313             {
314                 while (x + (delta / 2) > x)
315                     delta /= 2;
316             }
317             else
318             {
319                 do { delta += delta; } while (!(x + delta > x));
320             }
321             if (x < 0 && x + delta == 0)
322                 return -0.0L;
323             return x + delta;
324         }
325     }
326     static if (F.realFormat == RealFormat.ieeeDouble)
327     {
328         return nextUp(cast(double) x);
329     }
330     else static if (F.realFormat == RealFormat.ieeeQuadruple)
331     {
332         ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
333         if (e == F.EXPMASK)
334         {
335             // NaN or Infinity
336             if (x == -real.infinity) return -real.max;
337             return x; // +Inf and NaN are unchanged.
338         }
339 
340         auto ps = cast(ulong *)&x;
341         if (ps[MANTISSA_MSB] & 0x8000_0000_0000_0000)
342         {
343             // Negative number
344             if (ps[MANTISSA_LSB] == 0 && ps[MANTISSA_MSB] == 0x8000_0000_0000_0000)
345             {
346                 // it was negative zero, change to smallest subnormal
347                 ps[MANTISSA_LSB] = 1;
348                 ps[MANTISSA_MSB] = 0;
349                 return x;
350             }
351             if (ps[MANTISSA_LSB] == 0) --ps[MANTISSA_MSB];
352             --ps[MANTISSA_LSB];
353         }
354         else
355         {
356             // Positive number
357             ++ps[MANTISSA_LSB];
358             if (ps[MANTISSA_LSB] == 0) ++ps[MANTISSA_MSB];
359         }
360         return x;
361     }
362     else static if (F.realFormat == RealFormat.ieeeExtended ||
363                     F.realFormat == RealFormat.ieeeExtended53)
364     {
365         // For 80-bit reals, the "implied bit" is a nuisance...
366         ushort *pe = cast(ushort *)&x;
367         ulong  *ps = cast(ulong  *)&x;
368         // EPSILON is 1 for 64-bit, and 2048 for 53-bit precision reals.
369         enum ulong EPSILON = 2UL ^^ (64 - real.mant_dig);
370 
371         if ((pe[F.EXPPOS_SHORT] & F.EXPMASK) == F.EXPMASK)
372         {
373             // First, deal with NANs and infinity
374             if (x == -real.infinity) return -real.max;
375             return x; // +Inf and NaN are unchanged.
376         }
377         if (pe[F.EXPPOS_SHORT] & 0x8000)
378         {
379             // Negative number -- need to decrease the significand
380             *ps -= EPSILON;
381             // Need to mask with 0x7FFF... so subnormals are treated correctly.
382             if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_FFFF_FFFF_FFFF)
383             {
384                 if (pe[F.EXPPOS_SHORT] == 0x8000)   // it was negative zero
385                 {
386                     *ps = 1;
387                     pe[F.EXPPOS_SHORT] = 0; // smallest subnormal.
388                     return x;
389                 }
390 
391                 --pe[F.EXPPOS_SHORT];
392 
393                 if (pe[F.EXPPOS_SHORT] == 0x8000)
394                     return x; // it's become a subnormal, implied bit stays low.
395 
396                 *ps = 0xFFFF_FFFF_FFFF_FFFF; // set the implied bit
397                 return x;
398             }
399             return x;
400         }
401         else
402         {
403             // Positive number -- need to increase the significand.
404             // Works automatically for positive zero.
405             *ps += EPSILON;
406             if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0)
407             {
408                 // change in exponent
409                 ++pe[F.EXPPOS_SHORT];
410                 *ps = 0x8000_0000_0000_0000; // set the high bit
411             }
412         }
413         return x;
414     }
415     else // static if (F.realFormat == RealFormat.ibmExtended)
416     {
417         assert(0, "nextUp not implemented");
418     }
419 }
420 
421 /** ditto */
422 double nextUp(double x) @trusted pure nothrow @nogc
423 {
424     ulong s = *cast(ulong *)&x;
425 
426     if ((s & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000)
427     {
428         // First, deal with NANs and infinity
429         if (x == -x.infinity) return -x.max;
430         return x; // +INF and NAN are unchanged.
431     }
432     if (s & 0x8000_0000_0000_0000)    // Negative number
433     {
434         if (s == 0x8000_0000_0000_0000) // it was negative zero
435         {
436             s = 0x0000_0000_0000_0001; // change to smallest subnormal
437             return *cast(double*) &s;
438         }
439         --s;
440     }
441     else
442     {   // Positive number
443         ++s;
444     }
445     return *cast(double*) &s;
446 }
447 
448 /** ditto */
449 float nextUp(float x) @trusted pure nothrow @nogc
450 {
451     uint s = *cast(uint *)&x;
452 
453     if ((s & 0x7F80_0000) == 0x7F80_0000)
454     {
455         // First, deal with NANs and infinity
456         if (x == -x.infinity) return -x.max;
457 
458         return x; // +INF and NAN are unchanged.
459     }
460     if (s & 0x8000_0000)   // Negative number
461     {
462         if (s == 0x8000_0000) // it was negative zero
463         {
464             s = 0x0000_0001; // change to smallest subnormal
465             return *cast(float*) &s;
466         }
467 
468         --s;
469     }
470     else
471     {
472         // Positive number
473         ++s;
474     }
475     return *cast(float*) &s;
476 }
477 
478 ///
479 @safe @nogc pure nothrow unittest
480 {
481     assert(nextUp(1.0 - 1.0e-6).feqrel(0.999999) > 16);
482     assert(nextUp(1.0 - real.epsilon).feqrel(1.0) > 16);
483 }
484 
485 /**
486  * Calculate the next smallest floating point value before x.
487  *
488  * Return the greatest number less than x that is representable as a real;
489  * thus, it gives the previous point on the IEEE number line.
490  *
491  *  $(TABLE_SV
492  *    $(SVH x,            nextDown(x)   )
493  *    $(SV  $(INFIN),     real.max  )
494  *    $(SV  $(PLUSMN)0.0, -real.min_normal*real.epsilon )
495  *    $(SV  -real.max,    -$(INFIN) )
496  *    $(SV  -$(INFIN),    -$(INFIN) )
497  *    $(SV  $(NAN),       $(NAN)    )
498  * )
499  */
500 real nextDown(real x) @safe pure nothrow @nogc
501 {
502     return -nextUp(-x);
503 }
504 
505 /** ditto */
506 double nextDown(double x) @safe pure nothrow @nogc
507 {
508     return -nextUp(-x);
509 }
510 
511 /** ditto */
512 float nextDown(float x) @safe pure nothrow @nogc
513 {
514     return -nextUp(-x);
515 }
516 
517 ///
518 @safe pure nothrow @nogc unittest
519 {
520     assert( nextDown(1.0 + real.epsilon) == 1.0);
521 }
522 
523 @safe pure nothrow @nogc unittest
524 {
525     import std.math.traits : floatTraits, RealFormat, isIdentical;
526 
527     static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended ||
528                floatTraits!(real).realFormat == RealFormat.ieeeDouble ||
529                floatTraits!(real).realFormat == RealFormat.ieeeExtended53 ||
530                floatTraits!(real).realFormat == RealFormat.ieeeQuadruple)
531     {
532         // Tests for reals
533         assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC)));
534         //static assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC)));
535         // negative numbers
536         assert( nextUp(-real.infinity) == -real.max );
537         assert( nextUp(-1.0L-real.epsilon) == -1.0 );
538         assert( nextUp(-2.0L) == -2.0 + real.epsilon);
539         static assert( nextUp(-real.infinity) == -real.max );
540         static assert( nextUp(-1.0L-real.epsilon) == -1.0 );
541         static assert( nextUp(-2.0L) == -2.0 + real.epsilon);
542         // subnormals and zero
543         assert( nextUp(-real.min_normal) == -real.min_normal*(1-real.epsilon) );
544         assert( nextUp(-real.min_normal*(1-real.epsilon)) == -real.min_normal*(1-2*real.epsilon) );
545         assert( isIdentical(-0.0L, nextUp(-real.min_normal*real.epsilon)) );
546         assert( nextUp(-0.0L) == real.min_normal*real.epsilon );
547         assert( nextUp(0.0L) == real.min_normal*real.epsilon );
548         assert( nextUp(real.min_normal*(1-real.epsilon)) == real.min_normal );
549         assert( nextUp(real.min_normal) == real.min_normal*(1+real.epsilon) );
550         static assert( nextUp(-real.min_normal) == -real.min_normal*(1-real.epsilon) );
551         static assert( nextUp(-real.min_normal*(1-real.epsilon)) == -real.min_normal*(1-2*real.epsilon) );
552         static assert( -0.0L is nextUp(-real.min_normal*real.epsilon) );
553         static assert( nextUp(-0.0L) == real.min_normal*real.epsilon );
554         static assert( nextUp(0.0L) == real.min_normal*real.epsilon );
555         static assert( nextUp(real.min_normal*(1-real.epsilon)) == real.min_normal );
556         static assert( nextUp(real.min_normal) == real.min_normal*(1+real.epsilon) );
557         // positive numbers
558         assert( nextUp(1.0L) == 1.0 + real.epsilon );
559         assert( nextUp(2.0L-real.epsilon) == 2.0 );
560         assert( nextUp(real.max) == real.infinity );
561         assert( nextUp(real.infinity)==real.infinity );
562         static assert( nextUp(1.0L) == 1.0 + real.epsilon );
563         static assert( nextUp(2.0L-real.epsilon) == 2.0 );
564         static assert( nextUp(real.max) == real.infinity );
565         static assert( nextUp(real.infinity)==real.infinity );
566         // ctfe near double.max boundary
567         static assert(nextUp(nextDown(cast(real) double.max)) == cast(real) double.max);
568     }
569 
570     double n = NaN(0xABC);
571     assert(isIdentical(nextUp(n), n));
572     // negative numbers
573     assert( nextUp(-double.infinity) == -double.max );
574     assert( nextUp(-1-double.epsilon) == -1.0 );
575     assert( nextUp(-2.0) == -2.0 + double.epsilon);
576     // subnormals and zero
577 
578     assert( nextUp(-double.min_normal) == -double.min_normal*(1-double.epsilon) );
579     assert( nextUp(-double.min_normal*(1-double.epsilon)) == -double.min_normal*(1-2*double.epsilon) );
580     assert( isIdentical(-0.0, nextUp(-double.min_normal*double.epsilon)) );
581     assert( nextUp(0.0) == double.min_normal*double.epsilon );
582     assert( nextUp(-0.0) == double.min_normal*double.epsilon );
583     assert( nextUp(double.min_normal*(1-double.epsilon)) == double.min_normal );
584     assert( nextUp(double.min_normal) == double.min_normal*(1+double.epsilon) );
585     // positive numbers
586     assert( nextUp(1.0) == 1.0 + double.epsilon );
587     assert( nextUp(2.0-double.epsilon) == 2.0 );
588     assert( nextUp(double.max) == double.infinity );
589 
590     float fn = NaN(0xABC);
591     assert(isIdentical(nextUp(fn), fn));
592     float f = -float.min_normal*(1-float.epsilon);
593     float f1 = -float.min_normal;
594     assert( nextUp(f1) ==  f);
595     f = 1.0f+float.epsilon;
596     f1 = 1.0f;
597     assert( nextUp(f1) == f );
598     f1 = -0.0f;
599     assert( nextUp(f1) == float.min_normal*float.epsilon);
600     assert( nextUp(float.infinity)==float.infinity );
601 
602     assert(nextDown(1.0L+real.epsilon)==1.0);
603     assert(nextDown(1.0+double.epsilon)==1.0);
604     f = 1.0f+float.epsilon;
605     assert(nextDown(f)==1.0);
606     assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0);
607 
608     // CTFE
609 
610     enum double ctfe_n = NaN(0xABC);
611     //static assert(isIdentical(nextUp(ctfe_n), ctfe_n)); // FIXME: https://issues.dlang.org/show_bug.cgi?id=20197
612     static assert(nextUp(double.nan) is double.nan);
613     // negative numbers
614     static assert( nextUp(-double.infinity) == -double.max );
615     static assert( nextUp(-1-double.epsilon) == -1.0 );
616     static assert( nextUp(-2.0) == -2.0 + double.epsilon);
617     // subnormals and zero
618 
619     static assert( nextUp(-double.min_normal) == -double.min_normal*(1-double.epsilon) );
620     static assert( nextUp(-double.min_normal*(1-double.epsilon)) == -double.min_normal*(1-2*double.epsilon) );
621     static assert( -0.0 is nextUp(-double.min_normal*double.epsilon) );
622     static assert( nextUp(0.0) == double.min_normal*double.epsilon );
623     static assert( nextUp(-0.0) == double.min_normal*double.epsilon );
624     static assert( nextUp(double.min_normal*(1-double.epsilon)) == double.min_normal );
625     static assert( nextUp(double.min_normal) == double.min_normal*(1+double.epsilon) );
626     // positive numbers
627     static assert( nextUp(1.0) == 1.0 + double.epsilon );
628     static assert( nextUp(2.0-double.epsilon) == 2.0 );
629     static assert( nextUp(double.max) == double.infinity );
630 
631     enum float ctfe_fn = NaN(0xABC);
632     //static assert(isIdentical(nextUp(ctfe_fn), ctfe_fn)); // FIXME: https://issues.dlang.org/show_bug.cgi?id=20197
633     static assert(nextUp(float.nan) is float.nan);
634     static assert(nextUp(-float.min_normal) == -float.min_normal*(1-float.epsilon));
635     static assert(nextUp(1.0f) == 1.0f+float.epsilon);
636     static assert(nextUp(-0.0f) == float.min_normal*float.epsilon);
637     static assert(nextUp(float.infinity)==float.infinity);
638     static assert(nextDown(1.0L+real.epsilon)==1.0);
639     static assert(nextDown(1.0+double.epsilon)==1.0);
640     static assert(nextDown(1.0f+float.epsilon)==1.0);
641     static assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0);
642 }
643 
644 
645 
646 /******************************************
647  * Calculates the next representable value after x in the direction of y.
648  *
649  * If y > x, the result will be the next largest floating-point value;
650  * if y < x, the result will be the next smallest value.
651  * If x == y, the result is y.
652  * If x or y is a NaN, the result is a NaN.
653  *
654  * Remarks:
655  * This function is not generally very useful; it's almost always better to use
656  * the faster functions nextUp() or nextDown() instead.
657  *
658  * The FE_INEXACT and FE_OVERFLOW exceptions will be raised if x is finite and
659  * the function result is infinite. The FE_INEXACT and FE_UNDERFLOW
660  * exceptions will be raised if the function value is subnormal, and x is
661  * not equal to y.
662  */
663 T nextafter(T)(const T x, const T y) @safe pure nothrow @nogc
664 {
665     import std.math.traits : isNaN;
666 
667     if (x == y || isNaN(y))
668     {
669         return y;
670     }
671 
672     if (isNaN(x))
673     {
674         return x;
675     }
676 
677     return ((y>x) ? nextUp(x) :  nextDown(x));
678 }
679 
680 ///
681 @safe pure nothrow @nogc unittest
682 {
683     import std.math.traits : isNaN;
684 
685     float a = 1;
686     assert(is(typeof(nextafter(a, a)) == float));
687     assert(nextafter(a, a.infinity) > a);
688     assert(isNaN(nextafter(a, a.nan)));
689     assert(isNaN(nextafter(a.nan, a)));
690 
691     double b = 2;
692     assert(is(typeof(nextafter(b, b)) == double));
693     assert(nextafter(b, b.infinity) > b);
694     assert(isNaN(nextafter(b, b.nan)));
695     assert(isNaN(nextafter(b.nan, b)));
696 
697     real c = 3;
698     assert(is(typeof(nextafter(c, c)) == real));
699     assert(nextafter(c, c.infinity) > c);
700     assert(isNaN(nextafter(c, c.nan)));
701     assert(isNaN(nextafter(c.nan, c)));
702 }
703 
704 @safe pure nothrow @nogc unittest
705 {
706     import std.math.traits : isNaN, signbit;
707 
708     // CTFE
709     enum float a = 1;
710     static assert(is(typeof(nextafter(a, a)) == float));
711     static assert(nextafter(a, a.infinity) > a);
712     static assert(isNaN(nextafter(a, a.nan)));
713     static assert(isNaN(nextafter(a.nan, a)));
714 
715     enum double b = 2;
716     static assert(is(typeof(nextafter(b, b)) == double));
717     static assert(nextafter(b, b.infinity) > b);
718     static assert(isNaN(nextafter(b, b.nan)));
719     static assert(isNaN(nextafter(b.nan, b)));
720 
721     enum real c = 3;
722     static assert(is(typeof(nextafter(c, c)) == real));
723     static assert(nextafter(c, c.infinity) > c);
724     static assert(isNaN(nextafter(c, c.nan)));
725     static assert(isNaN(nextafter(c.nan, c)));
726 
727     enum real negZero = nextafter(+0.0L, -0.0L);
728     static assert(negZero == -0.0L);
729     static assert(signbit(negZero));
730 
731     static assert(nextafter(c, c) == c);
732 }
733 
734 //real nexttoward(real x, real y) { return core.stdc.math.nexttowardl(x, y); }
735 
736 /**
737  * Returns the positive difference between x and y.
738  *
739  * Equivalent to `fmax(x-y, 0)`.
740  *
741  * Returns:
742  *      $(TABLE_SV
743  *      $(TR $(TH x, y)       $(TH fdim(x, y)))
744  *      $(TR $(TD x $(GT) y)  $(TD x - y))
745  *      $(TR $(TD x $(LT)= y) $(TD +0.0))
746  *      )
747  */
748 real fdim(real x, real y) @safe pure nothrow @nogc
749 {
750     return (x < y) ? +0.0 : x - y;
751 }
752 
753 ///
754 @safe pure nothrow @nogc unittest
755 {
756     import std.math.traits : isNaN;
757 
758     assert(fdim(2.0, 0.0) == 2.0);
759     assert(fdim(-2.0, 0.0) == 0.0);
760     assert(fdim(real.infinity, 2.0) == real.infinity);
761     assert(isNaN(fdim(real.nan, 2.0)));
762     assert(isNaN(fdim(2.0, real.nan)));
763     assert(isNaN(fdim(real.nan, real.nan)));
764 }
765 
766 /**
767  * Returns the larger of `x` and `y`.
768  *
769  * If one of the arguments is a `NaN`, the other is returned.
770  *
771  * See_Also: $(REF max, std,algorithm,comparison) is faster because it does not perform the `isNaN` test.
772  */
773 F fmax(F)(const F x, const F y) @safe pure nothrow @nogc
774 if (__traits(isFloating, F))
775 {
776     import std.math.traits : isNaN;
777 
778     // Do the more predictable test first. Generates 0 branches with ldc and 1 branch with gdc.
779     // See https://godbolt.org/z/erxrW9
780     if (isNaN(x)) return y;
781     return y > x ? y : x;
782 }
783 
784 ///
785 @safe pure nothrow @nogc unittest
786 {
787     import std.meta : AliasSeq;
788     static foreach (F; AliasSeq!(float, double, real))
789     {
790         assert(fmax(F(0.0), F(2.0)) == 2.0);
791         assert(fmax(F(-2.0), 0.0) == F(0.0));
792         assert(fmax(F.infinity, F(2.0)) == F.infinity);
793         assert(fmax(F.nan, F(2.0)) == F(2.0));
794         assert(fmax(F(2.0), F.nan) == F(2.0));
795     }
796 }
797 
798 /**
799  * Returns the smaller of `x` and `y`.
800  *
801  * If one of the arguments is a `NaN`, the other is returned.
802  *
803  * See_Also: $(REF min, std,algorithm,comparison) is faster because it does not perform the `isNaN` test.
804  */
805 F fmin(F)(const F x, const F y) @safe pure nothrow @nogc
806 if (__traits(isFloating, F))
807 {
808     import std.math.traits : isNaN;
809 
810     // Do the more predictable test first. Generates 0 branches with ldc and 1 branch with gdc.
811     // See https://godbolt.org/z/erxrW9
812     if (isNaN(x)) return y;
813     return y < x ? y : x;
814 }
815 
816 ///
817 @safe pure nothrow @nogc unittest
818 {
819     import std.meta : AliasSeq;
820     static foreach (F; AliasSeq!(float, double, real))
821     {
822         assert(fmin(F(0.0), F(2.0)) == 0.0);
823         assert(fmin(F(-2.0), F(0.0)) == -2.0);
824         assert(fmin(F.infinity, F(2.0)) == 2.0);
825         assert(fmin(F.nan, F(2.0)) == 2.0);
826         assert(fmin(F(2.0), F.nan) == 2.0);
827     }
828 }
829 
830 /**************************************
831  * Returns (x * y) + z, rounding only once according to the
832  * current rounding mode.
833  *
834  * BUGS: Not currently implemented - rounds twice.
835  */
836 pragma(inline, true)
837 real fma(real x, real y, real z) @safe pure nothrow @nogc { return (x * y) + z; }
838 
839 ///
840 @safe pure nothrow @nogc unittest
841 {
842     assert(fma(0.0, 2.0, 2.0) == 2.0);
843     assert(fma(2.0, 2.0, 2.0) == 6.0);
844     assert(fma(real.infinity, 2.0, 2.0) == real.infinity);
845     assert(fma(real.nan, 2.0, 2.0) is real.nan);
846     assert(fma(2.0, 2.0, real.nan) is real.nan);
847 }
848 
849 /**************************************
850  * To what precision is x equal to y?
851  *
852  * Returns: the number of mantissa bits which are equal in x and y.
853  * eg, 0x1.F8p+60 and 0x1.F1p+60 are equal to 5 bits of precision.
854  *
855  *      $(TABLE_SV
856  *      $(TR $(TH x)      $(TH y)          $(TH feqrel(x, y)))
857  *      $(TR $(TD x)      $(TD x)          $(TD real.mant_dig))
858  *      $(TR $(TD x)      $(TD $(GT)= 2*x) $(TD 0))
859  *      $(TR $(TD x)      $(TD $(LT)= x/2) $(TD 0))
860  *      $(TR $(TD $(NAN)) $(TD any)        $(TD 0))
861  *      $(TR $(TD any)    $(TD $(NAN))     $(TD 0))
862  *      )
863  */
864 int feqrel(X)(const X x, const X y) @trusted pure nothrow @nogc
865 if (isFloatingPoint!(X))
866 {
867     import std.math.traits : floatTraits, RealFormat;
868     import core.math : fabs;
869 
870     /* Public Domain. Author: Don Clugston, 18 Aug 2005.
871      */
872     alias F = floatTraits!(X);
873     static if (F.realFormat == RealFormat.ieeeSingle
874             || F.realFormat == RealFormat.ieeeDouble
875             || F.realFormat == RealFormat.ieeeExtended
876             || F.realFormat == RealFormat.ieeeExtended53
877             || F.realFormat == RealFormat.ieeeQuadruple)
878     {
879         if (x == y)
880             return X.mant_dig; // ensure diff != 0, cope with INF.
881 
882         Unqual!X diff = fabs(x - y);
883 
884         ushort *pa = cast(ushort *)(&x);
885         ushort *pb = cast(ushort *)(&y);
886         ushort *pd = cast(ushort *)(&diff);
887 
888 
889         // The difference in abs(exponent) between x or y and abs(x-y)
890         // is equal to the number of significand bits of x which are
891         // equal to y. If negative, x and y have different exponents.
892         // If positive, x and y are equal to 'bitsdiff' bits.
893         // AND with 0x7FFF to form the absolute value.
894         // To avoid out-by-1 errors, we subtract 1 so it rounds down
895         // if the exponents were different. This means 'bitsdiff' is
896         // always 1 lower than we want, except that if bitsdiff == 0,
897         // they could have 0 or 1 bits in common.
898 
899         int bitsdiff = (((  (pa[F.EXPPOS_SHORT] & F.EXPMASK)
900                           + (pb[F.EXPPOS_SHORT] & F.EXPMASK)
901                           - (1 << F.EXPSHIFT)) >> 1)
902                         - (pd[F.EXPPOS_SHORT] & F.EXPMASK)) >> F.EXPSHIFT;
903         if ( (pd[F.EXPPOS_SHORT] & F.EXPMASK) == 0)
904         {   // Difference is subnormal
905             // For subnormals, we need to add the number of zeros that
906             // lie at the start of diff's significand.
907             // We do this by multiplying by 2^^real.mant_dig
908             diff *= F.RECIP_EPSILON;
909             return bitsdiff + X.mant_dig - ((pd[F.EXPPOS_SHORT] & F.EXPMASK) >> F.EXPSHIFT);
910         }
911 
912         if (bitsdiff > 0)
913             return bitsdiff + 1; // add the 1 we subtracted before
914 
915         // Avoid out-by-1 errors when factor is almost 2.
916         if (bitsdiff == 0
917             && ((pa[F.EXPPOS_SHORT] ^ pb[F.EXPPOS_SHORT]) & F.EXPMASK) == 0)
918         {
919             return 1;
920         } else return 0;
921     }
922     else
923     {
924         static assert(false, "Not implemented for this architecture");
925     }
926 }
927 
928 ///
929 @safe pure unittest
930 {
931     assert(feqrel(2.0, 2.0) == 53);
932     assert(feqrel(2.0f, 2.0f) == 24);
933     assert(feqrel(2.0, double.nan) == 0);
934 
935     // Test that numbers are within n digits of each
936     // other by testing if feqrel > n * log2(10)
937 
938     // five digits
939     assert(feqrel(2.0, 2.00001) > 16);
940     // ten digits
941     assert(feqrel(2.0, 2.00000000001) > 33);
942 }
943 
944 @safe pure nothrow @nogc unittest
945 {
946     void testFeqrel(F)()
947     {
948        // Exact equality
949        assert(feqrel(F.max, F.max) == F.mant_dig);
950        assert(feqrel!(F)(0.0, 0.0) == F.mant_dig);
951        assert(feqrel(F.infinity, F.infinity) == F.mant_dig);
952 
953        // a few bits away from exact equality
954        F w=1;
955        for (int i = 1; i < F.mant_dig - 1; ++i)
956        {
957           assert(feqrel!(F)(1.0 + w * F.epsilon, 1.0) == F.mant_dig-i);
958           assert(feqrel!(F)(1.0 - w * F.epsilon, 1.0) == F.mant_dig-i);
959           assert(feqrel!(F)(1.0, 1 + (w-1) * F.epsilon) == F.mant_dig - i + 1);
960           w*=2;
961        }
962 
963        assert(feqrel!(F)(1.5+F.epsilon, 1.5) == F.mant_dig-1);
964        assert(feqrel!(F)(1.5-F.epsilon, 1.5) == F.mant_dig-1);
965        assert(feqrel!(F)(1.5-F.epsilon, 1.5+F.epsilon) == F.mant_dig-2);
966 
967 
968        // Numbers that are close
969        assert(feqrel!(F)(0x1.Bp+84, 0x1.B8p+84) == 5);
970        assert(feqrel!(F)(0x1.8p+10, 0x1.Cp+10) == 2);
971        assert(feqrel!(F)(1.5 * (1 - F.epsilon), 1.0L) == 2);
972        assert(feqrel!(F)(1.5, 1.0) == 1);
973        assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1);
974 
975        // Factors of 2
976        assert(feqrel(F.max, F.infinity) == 0);
977        assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1);
978        assert(feqrel!(F)(1.0, 2.0) == 0);
979        assert(feqrel!(F)(4.0, 1.0) == 0);
980 
981        // Extreme inequality
982        assert(feqrel(F.nan, F.nan) == 0);
983        assert(feqrel!(F)(0.0L, -F.nan) == 0);
984        assert(feqrel(F.nan, F.infinity) == 0);
985        assert(feqrel(F.infinity, -F.infinity) == 0);
986        assert(feqrel(F.max, -F.max) == 0);
987 
988        assert(feqrel(F.min_normal / 8, F.min_normal / 17) == 3);
989 
990        const F Const = 2;
991        immutable F Immutable = 2;
992        auto Compiles = feqrel(Const, Immutable);
993     }
994 
995     assert(feqrel(7.1824L, 7.1824L) == real.mant_dig);
996 
997     testFeqrel!(real)();
998     testFeqrel!(double)();
999     testFeqrel!(float)();
1000 }
1001 
1002 /**
1003    Computes whether a values is approximately equal to a reference value,
1004    admitting a maximum relative difference, and a maximum absolute difference.
1005 
1006    Warning:
1007         This template is considered out-dated. It will be removed from
1008         Phobos in 2.106.0. Please use $(LREF isClose) instead. To achieve
1009         a similar behaviour to `approxEqual(a, b)` use
1010         `isClose(a, b, 1e-2, 1e-5)`. In case of comparing to 0.0,
1011         `isClose(a, b, 0.0, eps)` should be used, where `eps`
1012         represents the accepted deviation from 0.0."
1013 
1014    Params:
1015         value = Value to compare.
1016         reference = Reference value.
1017         maxRelDiff = Maximum allowable difference relative to `reference`.
1018         Setting to 0.0 disables this check. Defaults to `1e-2`.
1019         maxAbsDiff = Maximum absolute difference. This is mainly usefull
1020         for comparing values to zero. Setting to 0.0 disables this check.
1021         Defaults to `1e-5`.
1022 
1023    Returns:
1024        `true` if `value` is approximately equal to `reference` under
1025        either criterium. It is sufficient, when `value ` satisfies
1026        one of the two criteria.
1027 
1028        If one item is a range, and the other is a single value, then
1029        the result is the logical and-ing of calling `approxEqual` on
1030        each element of the ranged item against the single item. If
1031        both items are ranges, then `approxEqual` returns `true` if
1032        and only if the ranges have the same number of elements and if
1033        `approxEqual` evaluates to `true` for each pair of elements.
1034 
1035     See_Also:
1036         Use $(LREF feqrel) to get the number of equal bits in the mantissa.
1037  */
1038 deprecated("approxEqual will be removed in 2.106.0. Please use isClose instead.")
1039 bool approxEqual(T, U, V)(T value, U reference, V maxRelDiff = 1e-2, V maxAbsDiff = 1e-5)
1040 {
1041     import core.math : fabs;
1042     import std.range.primitives : empty, front, isInputRange, popFront;
1043     static if (isInputRange!T)
1044     {
1045         static if (isInputRange!U)
1046         {
1047             // Two ranges
1048             for (;; value.popFront(), reference.popFront())
1049             {
1050                 if (value.empty) return reference.empty;
1051                 if (reference.empty) return value.empty;
1052                 if (!approxEqual(value.front, reference.front, maxRelDiff, maxAbsDiff))
1053                     return false;
1054             }
1055         }
1056         else static if (isIntegral!U)
1057         {
1058             // convert reference to real
1059             return approxEqual(value, real(reference), maxRelDiff, maxAbsDiff);
1060         }
1061         else
1062         {
1063             // value is range, reference is number
1064             for (; !value.empty; value.popFront())
1065             {
1066                 if (!approxEqual(value.front, reference, maxRelDiff, maxAbsDiff))
1067                     return false;
1068             }
1069             return true;
1070         }
1071     }
1072     else
1073     {
1074         static if (isInputRange!U)
1075         {
1076             // value is number, reference is range
1077             for (; !reference.empty; reference.popFront())
1078             {
1079                 if (!approxEqual(value, reference.front, maxRelDiff, maxAbsDiff))
1080                     return false;
1081             }
1082             return true;
1083         }
1084         else static if (isIntegral!T || isIntegral!U)
1085         {
1086             // convert both value and reference to real
1087             return approxEqual(real(value), real(reference), maxRelDiff, maxAbsDiff);
1088         }
1089         else
1090         {
1091             // two numbers
1092             //static assert(is(T : real) && is(U : real));
1093             if (reference == 0)
1094             {
1095                 return fabs(value) <= maxAbsDiff;
1096             }
1097             static if (is(typeof(value.infinity)) && is(typeof(reference.infinity)))
1098             {
1099                 if (value == value.infinity && reference == reference.infinity ||
1100                     value == -value.infinity && reference == -reference.infinity) return true;
1101             }
1102             return fabs((value - reference) / reference) <= maxRelDiff
1103                 || maxAbsDiff != 0 && fabs(value - reference) <= maxAbsDiff;
1104         }
1105     }
1106 }
1107 
1108 deprecated @safe pure nothrow unittest
1109 {
1110     assert(approxEqual(1.0, 1.0099));
1111     assert(!approxEqual(1.0, 1.011));
1112     assert(approxEqual(0.00001, 0.0));
1113     assert(!approxEqual(0.00002, 0.0));
1114 
1115     assert(approxEqual(3.0, [3, 3.01, 2.99])); // several reference values is strange
1116     assert(approxEqual([3, 3.01, 2.99], 3.0)); // better
1117 
1118     float[] arr1 = [ 1.0, 2.0, 3.0 ];
1119     double[] arr2 = [ 1.001, 1.999, 3 ];
1120     assert(approxEqual(arr1, arr2));
1121 }
1122 
1123 deprecated @safe pure nothrow unittest
1124 {
1125     // relative comparison depends on reference, make sure proper
1126     // side is used when comparing range to single value. Based on
1127     // https://issues.dlang.org/show_bug.cgi?id=15763
1128     auto a = [2e-3 - 1e-5];
1129     auto b = 2e-3 + 1e-5;
1130     assert(a[0].approxEqual(b));
1131     assert(!b.approxEqual(a[0]));
1132     assert(a.approxEqual(b));
1133     assert(!b.approxEqual(a));
1134 }
1135 
1136 deprecated @safe pure nothrow @nogc unittest
1137 {
1138     assert(!approxEqual(0.0,1e-15,1e-9,0.0));
1139     assert(approxEqual(0.0,1e-15,1e-9,1e-9));
1140     assert(!approxEqual(1.0,3.0,0.0,1.0));
1141 
1142     assert(approxEqual(1.00000000099,1.0,1e-9,0.0));
1143     assert(!approxEqual(1.0000000011,1.0,1e-9,0.0));
1144 }
1145 
1146 deprecated @safe pure nothrow @nogc unittest
1147 {
1148     // maybe unintuitive behavior
1149     assert(approxEqual(1000.0,1010.0));
1150     assert(approxEqual(9_090_000_000.0,9_000_000_000.0));
1151     assert(approxEqual(0.0,1e30,1.0));
1152     assert(approxEqual(0.00001,1e-30));
1153     assert(!approxEqual(-1e-30,1e-30,1e-2,0.0));
1154 }
1155 
1156 deprecated @safe pure nothrow @nogc unittest
1157 {
1158     int a = 10;
1159     assert(approxEqual(10, a));
1160 
1161     assert(!approxEqual(3, 0));
1162     assert(approxEqual(3, 3));
1163     assert(approxEqual(3.0, 3));
1164     assert(approxEqual(3, 3.0));
1165 
1166     assert(approxEqual(0.0,0.0));
1167     assert(approxEqual(-0.0,0.0));
1168     assert(approxEqual(0.0f,0.0));
1169 }
1170 
1171 deprecated @safe pure nothrow @nogc unittest
1172 {
1173     real num = real.infinity;
1174     assert(num == real.infinity);
1175     assert(approxEqual(num, real.infinity));
1176     num = -real.infinity;
1177     assert(num == -real.infinity);
1178     assert(approxEqual(num, -real.infinity));
1179 
1180     assert(!approxEqual(1,real.nan));
1181     assert(!approxEqual(real.nan,real.max));
1182     assert(!approxEqual(real.nan,real.nan));
1183 }
1184 
1185 deprecated @safe pure nothrow unittest
1186 {
1187     assert(!approxEqual([1.0,2.0,3.0],[1.0,2.0]));
1188     assert(!approxEqual([1.0,2.0],[1.0,2.0,3.0]));
1189 
1190     assert(approxEqual!(real[],real[])([],[]));
1191     assert(approxEqual(cast(real[])[],cast(real[])[]));
1192 }
1193 
1194 
1195 /**
1196    Computes whether two values are approximately equal, admitting a maximum
1197    relative difference, and a maximum absolute difference.
1198 
1199    Params:
1200         lhs = First item to compare.
1201         rhs = Second item to compare.
1202         maxRelDiff = Maximum allowable relative difference.
1203         Setting to 0.0 disables this check. Default depends on the type of
1204         `lhs` and `rhs`: It is approximately half the number of decimal digits of
1205         precision of the smaller type.
1206         maxAbsDiff = Maximum absolute difference. This is mainly usefull
1207         for comparing values to zero. Setting to 0.0 disables this check.
1208         Defaults to `0.0`.
1209 
1210    Returns:
1211        `true` if the two items are approximately equal under either criterium.
1212        It is sufficient, when `value ` satisfies one of the two criteria.
1213 
1214        If one item is a range, and the other is a single value, then
1215        the result is the logical and-ing of calling `isClose` on
1216        each element of the ranged item against the single item. If
1217        both items are ranges, then `isClose` returns `true` if
1218        and only if the ranges have the same number of elements and if
1219        `isClose` evaluates to `true` for each pair of elements.
1220 
1221     See_Also:
1222         Use $(LREF feqrel) to get the number of equal bits in the mantissa.
1223  */
1224 bool isClose(T, U, V = CommonType!(FloatingPointBaseType!T,FloatingPointBaseType!U))
1225     (T lhs, U rhs, V maxRelDiff = CommonDefaultFor!(T,U), V maxAbsDiff = 0.0)
1226 {
1227     import std.range.primitives : empty, front, isInputRange, popFront;
1228     import std.complex : Complex;
1229     static if (isInputRange!T)
1230     {
1231         static if (isInputRange!U)
1232         {
1233             // Two ranges
1234             for (;; lhs.popFront(), rhs.popFront())
1235             {
1236                 if (lhs.empty) return rhs.empty;
1237                 if (rhs.empty) return lhs.empty;
1238                 if (!isClose(lhs.front, rhs.front, maxRelDiff, maxAbsDiff))
1239                     return false;
1240             }
1241         }
1242         else
1243         {
1244             // lhs is range, rhs is number
1245             for (; !lhs.empty; lhs.popFront())
1246             {
1247                 if (!isClose(lhs.front, rhs, maxRelDiff, maxAbsDiff))
1248                     return false;
1249             }
1250             return true;
1251         }
1252     }
1253     else static if (isInputRange!U)
1254     {
1255         // lhs is number, rhs is range
1256         for (; !rhs.empty; rhs.popFront())
1257         {
1258             if (!isClose(lhs, rhs.front, maxRelDiff, maxAbsDiff))
1259                 return false;
1260         }
1261         return true;
1262     }
1263     else static if (is(T TE == Complex!TE))
1264     {
1265         static if (is(U UE == Complex!UE))
1266         {
1267             // Two complex numbers
1268             return isClose(lhs.re, rhs.re, maxRelDiff, maxAbsDiff)
1269                 && isClose(lhs.im, rhs.im, maxRelDiff, maxAbsDiff);
1270         }
1271         else
1272         {
1273             // lhs is complex, rhs is number
1274             return isClose(lhs.re, rhs, maxRelDiff, maxAbsDiff)
1275                 && isClose(lhs.im, 0.0, maxRelDiff, maxAbsDiff);
1276         }
1277     }
1278     else static if (is(U UE == Complex!UE))
1279     {
1280         // lhs is number, rhs is complex
1281         return isClose(lhs, rhs.re, maxRelDiff, maxAbsDiff)
1282             && isClose(0.0, rhs.im, maxRelDiff, maxAbsDiff);
1283     }
1284     else
1285     {
1286         // two numbers
1287         if (lhs == rhs) return true;
1288 
1289         static if (is(typeof(lhs.infinity)))
1290             if (lhs == lhs.infinity || lhs == -lhs.infinity)
1291                  return false;
1292         static if (is(typeof(rhs.infinity)))
1293             if (rhs == rhs.infinity || rhs == -rhs.infinity)
1294                 return false;
1295 
1296         import std.math.algebraic : abs;
1297 
1298         auto diff = abs(lhs - rhs);
1299 
1300         return diff <= maxRelDiff*abs(lhs)
1301             || diff <= maxRelDiff*abs(rhs)
1302             || diff <= maxAbsDiff;
1303     }
1304 }
1305 
1306 ///
1307 @safe pure nothrow @nogc unittest
1308 {
1309     assert(isClose(1.0,0.999_999_999));
1310     assert(isClose(0.001, 0.000_999_999_999));
1311     assert(isClose(1_000_000_000.0,999_999_999.0));
1312 
1313     assert(isClose(17.123_456_789, 17.123_456_78));
1314     assert(!isClose(17.123_456_789, 17.123_45));
1315 
1316     // use explicit 3rd parameter for less (or more) accuracy
1317     assert(isClose(17.123_456_789, 17.123_45, 1e-6));
1318     assert(!isClose(17.123_456_789, 17.123_45, 1e-7));
1319 
1320     // use 4th parameter when comparing close to zero
1321     assert(!isClose(1e-100, 0.0));
1322     assert(isClose(1e-100, 0.0, 0.0, 1e-90));
1323     assert(!isClose(1e-10, -1e-10));
1324     assert(isClose(1e-10, -1e-10, 0.0, 1e-9));
1325     assert(!isClose(1e-300, 1e-298));
1326     assert(isClose(1e-300, 1e-298, 0.0, 1e-200));
1327 
1328     // different default limits for different floating point types
1329     assert(isClose(1.0f, 0.999_99f));
1330     assert(!isClose(1.0, 0.999_99));
1331     static if (real.sizeof > double.sizeof)
1332         assert(!isClose(1.0L, 0.999_999_999L));
1333 }
1334 
1335 ///
1336 @safe pure nothrow unittest
1337 {
1338     assert(isClose([1.0, 2.0, 3.0], [0.999_999_999, 2.000_000_001, 3.0]));
1339     assert(!isClose([1.0, 2.0], [0.999_999_999, 2.000_000_001, 3.0]));
1340     assert(!isClose([1.0, 2.0, 3.0], [0.999_999_999, 2.000_000_001]));
1341 
1342     assert(isClose([2.0, 1.999_999_999, 2.000_000_001], 2.0));
1343     assert(isClose(2.0, [2.0, 1.999_999_999, 2.000_000_001]));
1344 }
1345 
1346 @safe pure nothrow unittest
1347 {
1348     assert(!isClose([1.0, 2.0, 3.0], [0.999_999_999, 3.0, 3.0]));
1349     assert(!isClose([2.0, 1.999_999, 2.000_000_001], 2.0));
1350     assert(!isClose(2.0, [2.0, 1.999_999_999, 2.000_000_999]));
1351 }
1352 
1353 @safe pure nothrow @nogc unittest
1354 {
1355     immutable a = 1.00001f;
1356     const b = 1.000019;
1357     assert(isClose(a,b));
1358 
1359     assert(isClose(1.00001f,1.000019f));
1360     assert(isClose(1.00001f,1.000019));
1361     assert(isClose(1.00001,1.000019f));
1362     assert(!isClose(1.00001,1.000019));
1363 
1364     real a1 = 1e-300L;
1365     real a2 = a1.nextUp;
1366     assert(isClose(a1,a2));
1367 }
1368 
1369 @safe pure nothrow unittest
1370 {
1371     float[] arr1 = [ 1.0, 2.0, 3.0 ];
1372     double[] arr2 = [ 1.00001, 1.99999, 3 ];
1373     assert(isClose(arr1, arr2));
1374 }
1375 
1376 @safe pure nothrow @nogc unittest
1377 {
1378     assert(!isClose(1000.0,1010.0));
1379     assert(!isClose(9_090_000_000.0,9_000_000_000.0));
1380     assert(isClose(0.0,1e30,1.0));
1381     assert(!isClose(0.00001,1e-30));
1382     assert(!isClose(-1e-30,1e-30,1e-2,0.0));
1383 }
1384 
1385 @safe pure nothrow @nogc unittest
1386 {
1387     assert(!isClose(3, 0));
1388     assert(isClose(3, 3));
1389     assert(isClose(3.0, 3));
1390     assert(isClose(3, 3.0));
1391 
1392     assert(isClose(0.0,0.0));
1393     assert(isClose(-0.0,0.0));
1394     assert(isClose(0.0f,0.0));
1395 }
1396 
1397 @safe pure nothrow @nogc unittest
1398 {
1399     real num = real.infinity;
1400     assert(num == real.infinity);
1401     assert(isClose(num, real.infinity));
1402     num = -real.infinity;
1403     assert(num == -real.infinity);
1404     assert(isClose(num, -real.infinity));
1405 
1406     assert(!isClose(1,real.nan));
1407     assert(!isClose(real.nan,real.max));
1408     assert(!isClose(real.nan,real.nan));
1409 
1410     assert(!isClose(-double.infinity, 1));
1411 }
1412 
1413 @safe pure nothrow @nogc unittest
1414 {
1415     assert(isClose!(real[],real[],real)([],[]));
1416     assert(isClose(cast(real[])[],cast(real[])[]));
1417 }
1418 
1419 @safe pure nothrow @nogc unittest
1420 {
1421     import std.conv : to;
1422 
1423     float f = 31.79f;
1424     double d = 31.79;
1425     double f2d = f.to!double;
1426 
1427     assert(isClose(f,f2d));
1428     assert(!isClose(d,f2d));
1429 }
1430 
1431 @safe pure nothrow @nogc unittest
1432 {
1433     import std.conv : to;
1434 
1435     double d = 31.79;
1436     float f = d.to!float;
1437     double f2d = f.to!double;
1438 
1439     assert(isClose(f,f2d));
1440     assert(!isClose(d,f2d));
1441     assert(isClose(d,f2d,1e-4));
1442 }
1443 
1444 package(std.math) template CommonDefaultFor(T,U)
1445 {
1446     import std.algorithm.comparison : min;
1447 
1448     alias baseT = FloatingPointBaseType!T;
1449     alias baseU = FloatingPointBaseType!U;
1450 
1451     enum CommonType!(baseT, baseU) CommonDefaultFor = 10.0L ^^ -((min(baseT.dig, baseU.dig) + 1) / 2 + 1);
1452 }
1453 
1454 private template FloatingPointBaseType(T)
1455 {
1456     import std.range.primitives : ElementType;
1457     static if (isFloatingPoint!T)
1458     {
1459         alias FloatingPointBaseType = Unqual!T;
1460     }
1461     else static if (isFloatingPoint!(ElementType!(Unqual!T)))
1462     {
1463         alias FloatingPointBaseType = Unqual!(ElementType!(Unqual!T));
1464     }
1465     else
1466     {
1467         alias FloatingPointBaseType = real;
1468     }
1469 }
1470 
1471 /***********************************
1472  * Defines a total order on all floating-point numbers.
1473  *
1474  * The order is defined as follows:
1475  * $(UL
1476  *      $(LI All numbers in [-$(INFIN), +$(INFIN)] are ordered
1477  *          the same way as by built-in comparison, with the exception of
1478  *          -0.0, which is less than +0.0;)
1479  *      $(LI If the sign bit is set (that is, it's 'negative'), $(NAN) is less
1480  *          than any number; if the sign bit is not set (it is 'positive'),
1481  *          $(NAN) is greater than any number;)
1482  *      $(LI $(NAN)s of the same sign are ordered by the payload ('negative'
1483  *          ones - in reverse order).)
1484  * )
1485  *
1486  * Returns:
1487  *      negative value if `x` precedes `y` in the order specified above;
1488  *      0 if `x` and `y` are identical, and positive value otherwise.
1489  *
1490  * See_Also:
1491  *      $(MYREF isIdentical)
1492  * Standards: Conforms to IEEE 754-2008
1493  */
1494 int cmp(T)(const(T) x, const(T) y) @nogc @trusted pure nothrow
1495 if (isFloatingPoint!T)
1496 {
1497     import std.math.traits : floatTraits, RealFormat;
1498 
1499     alias F = floatTraits!T;
1500 
1501     static if (F.realFormat == RealFormat.ieeeSingle
1502                || F.realFormat == RealFormat.ieeeDouble)
1503     {
1504         static if (T.sizeof == 4)
1505             alias UInt = uint;
1506         else
1507             alias UInt = ulong;
1508 
1509         union Repainter
1510         {
1511             T number;
1512             UInt bits;
1513         }
1514 
1515         enum msb = ~(UInt.max >>> 1);
1516 
1517         import std.typecons : Tuple;
1518         Tuple!(Repainter, Repainter) vars = void;
1519         vars[0].number = x;
1520         vars[1].number = y;
1521 
1522         foreach (ref var; vars)
1523             if (var.bits & msb)
1524                 var.bits = ~var.bits;
1525             else
1526                 var.bits |= msb;
1527 
1528         if (vars[0].bits < vars[1].bits)
1529             return -1;
1530         else if (vars[0].bits > vars[1].bits)
1531             return 1;
1532         else
1533             return 0;
1534     }
1535     else static if (F.realFormat == RealFormat.ieeeExtended53
1536                     || F.realFormat == RealFormat.ieeeExtended
1537                     || F.realFormat == RealFormat.ieeeQuadruple)
1538     {
1539         static if (F.realFormat == RealFormat.ieeeQuadruple)
1540             alias RemT = ulong;
1541         else
1542             alias RemT = ushort;
1543 
1544         struct Bits
1545         {
1546             ulong bulk;
1547             RemT rem;
1548         }
1549 
1550         union Repainter
1551         {
1552             T number;
1553             Bits bits;
1554             ubyte[T.sizeof] bytes;
1555         }
1556 
1557         import std.typecons : Tuple;
1558         Tuple!(Repainter, Repainter) vars = void;
1559         vars[0].number = x;
1560         vars[1].number = y;
1561 
1562         foreach (ref var; vars)
1563             if (var.bytes[F.SIGNPOS_BYTE] & 0x80)
1564             {
1565                 var.bits.bulk = ~var.bits.bulk;
1566                 var.bits.rem = cast(typeof(var.bits.rem))(-1 - var.bits.rem); // ~var.bits.rem
1567             }
1568             else
1569             {
1570                 var.bytes[F.SIGNPOS_BYTE] |= 0x80;
1571             }
1572 
1573         version (LittleEndian)
1574         {
1575             if (vars[0].bits.rem < vars[1].bits.rem)
1576                 return -1;
1577             else if (vars[0].bits.rem > vars[1].bits.rem)
1578                 return 1;
1579             else if (vars[0].bits.bulk < vars[1].bits.bulk)
1580                 return -1;
1581             else if (vars[0].bits.bulk > vars[1].bits.bulk)
1582                 return 1;
1583             else
1584                 return 0;
1585         }
1586         else
1587         {
1588             if (vars[0].bits.bulk < vars[1].bits.bulk)
1589                 return -1;
1590             else if (vars[0].bits.bulk > vars[1].bits.bulk)
1591                 return 1;
1592             else if (vars[0].bits.rem < vars[1].bits.rem)
1593                 return -1;
1594             else if (vars[0].bits.rem > vars[1].bits.rem)
1595                 return 1;
1596             else
1597                 return 0;
1598         }
1599     }
1600     else
1601     {
1602         // IBM Extended doubledouble does not follow the general
1603         // sign-exponent-significand layout, so has to be handled generically
1604 
1605         import std.math.traits : signbit, isNaN;
1606 
1607         const int xSign = signbit(x),
1608             ySign = signbit(y);
1609 
1610         if (xSign == 1 && ySign == 1)
1611             return cmp(-y, -x);
1612         else if (xSign == 1)
1613             return -1;
1614         else if (ySign == 1)
1615             return 1;
1616         else if (x < y)
1617             return -1;
1618         else if (x == y)
1619             return 0;
1620         else if (x > y)
1621             return 1;
1622         else if (isNaN(x) && !isNaN(y))
1623             return 1;
1624         else if (isNaN(y) && !isNaN(x))
1625             return -1;
1626         else if (getNaNPayload(x) < getNaNPayload(y))
1627             return -1;
1628         else if (getNaNPayload(x) > getNaNPayload(y))
1629             return 1;
1630         else
1631             return 0;
1632     }
1633 }
1634 
1635 /// Most numbers are ordered naturally.
1636 @safe unittest
1637 {
1638     assert(cmp(-double.infinity, -double.max) < 0);
1639     assert(cmp(-double.max, -100.0) < 0);
1640     assert(cmp(-100.0, -0.5) < 0);
1641     assert(cmp(-0.5, 0.0) < 0);
1642     assert(cmp(0.0, 0.5) < 0);
1643     assert(cmp(0.5, 100.0) < 0);
1644     assert(cmp(100.0, double.max) < 0);
1645     assert(cmp(double.max, double.infinity) < 0);
1646 
1647     assert(cmp(1.0, 1.0) == 0);
1648 }
1649 
1650 /// Positive and negative zeroes are distinct.
1651 @safe unittest
1652 {
1653     assert(cmp(-0.0, +0.0) < 0);
1654     assert(cmp(+0.0, -0.0) > 0);
1655 }
1656 
1657 /// Depending on the sign, $(NAN)s go to either end of the spectrum.
1658 @safe unittest
1659 {
1660     assert(cmp(-double.nan, -double.infinity) < 0);
1661     assert(cmp(double.infinity, double.nan) < 0);
1662     assert(cmp(-double.nan, double.nan) < 0);
1663 }
1664 
1665 /// $(NAN)s of the same sign are ordered by the payload.
1666 @safe unittest
1667 {
1668     assert(cmp(NaN(10), NaN(20)) < 0);
1669     assert(cmp(-NaN(20), -NaN(10)) < 0);
1670 }
1671 
1672 @safe unittest
1673 {
1674     import std.meta : AliasSeq;
1675     static foreach (T; AliasSeq!(float, double, real))
1676     {{
1677         T[] values = [-cast(T) NaN(20), -cast(T) NaN(10), -T.nan, -T.infinity,
1678                       -T.max, -T.max / 2, T(-16.0), T(-1.0).nextDown,
1679                       T(-1.0), T(-1.0).nextUp,
1680                       T(-0.5), -T.min_normal, (-T.min_normal).nextUp,
1681                       -2 * T.min_normal * T.epsilon,
1682                       -T.min_normal * T.epsilon,
1683                       T(-0.0), T(0.0),
1684                       T.min_normal * T.epsilon,
1685                       2 * T.min_normal * T.epsilon,
1686                       T.min_normal.nextDown, T.min_normal, T(0.5),
1687                       T(1.0).nextDown, T(1.0),
1688                       T(1.0).nextUp, T(16.0), T.max / 2, T.max,
1689                       T.infinity, T.nan, cast(T) NaN(10), cast(T) NaN(20)];
1690 
1691         foreach (i, x; values)
1692         {
1693             foreach (y; values[i + 1 .. $])
1694             {
1695                 assert(cmp(x, y) < 0);
1696                 assert(cmp(y, x) > 0);
1697             }
1698             assert(cmp(x, x) == 0);
1699         }
1700     }}
1701 }
1702 
1703 package(std): // not yet public
1704 
1705 struct FloatingPointBitpattern(T)
1706 if (isFloatingPoint!T)
1707 {
1708     static if (T.mant_dig <= 64)
1709     {
1710         ulong mantissa;
1711     }
1712     else
1713     {
1714         ulong mantissa_lsb;
1715         ulong mantissa_msb;
1716     }
1717 
1718     int exponent;
1719     bool negative;
1720 }
1721 
1722 FloatingPointBitpattern!T extractBitpattern(T)(const(T) value) @trusted
1723 if (isFloatingPoint!T)
1724 {
1725     import std.math.traits : floatTraits, RealFormat;
1726 
1727     T val = value;
1728     FloatingPointBitpattern!T ret;
1729 
1730     alias F = floatTraits!T;
1731     static if (F.realFormat == RealFormat.ieeeExtended)
1732     {
1733         if (__ctfe)
1734         {
1735             import core.math : fabs, ldexp;
1736             import std.math.rounding : floor;
1737             import std.math.traits : isInfinity, isNaN, signbit;
1738             import std.math.exponential : log2;
1739 
1740             if (isNaN(val) || isInfinity(val))
1741                 ret.exponent = 32767;
1742             else if (fabs(val) < real.min_normal)
1743                 ret.exponent = 0;
1744             else if (fabs(val) >= nextUp(real.max / 2))
1745                 ret.exponent = 32766;
1746             else
1747                 ret.exponent = cast(int) (val.fabs.log2.floor() + 16383);
1748 
1749             if (ret.exponent == 32767)
1750             {
1751                 // NaN or infinity
1752                 ret.mantissa = isNaN(val) ? ((1L << 63) - 1) : 0;
1753             }
1754             else
1755             {
1756                 auto delta = 16382 + 64 // bias + bits of ulong
1757                              - (ret.exponent == 0 ? 1 : ret.exponent); // -1 in case of subnormals
1758                 val = ldexp(val, delta); // val *= 2^^delta
1759 
1760                 ulong tmp = cast(ulong) fabs(val);
1761                 if (ret.exponent != 32767 && ret.exponent > 0 && tmp <= ulong.max / 2)
1762                 {
1763                     // correction, due to log2(val) being rounded up:
1764                     ret.exponent--;
1765                     val *= 2;
1766                     tmp = cast(ulong) fabs(val);
1767                 }
1768 
1769                 ret.mantissa = tmp & long.max;
1770             }
1771 
1772             ret.negative = (signbit(val) == 1);
1773         }
1774         else
1775         {
1776             ushort* vs = cast(ushort*) &val;
1777             ret.mantissa = (cast(ulong*) vs)[0] & long.max;
1778             ret.exponent = vs[4] & short.max;
1779             ret.negative = (vs[4] >> 15) & 1;
1780         }
1781     }
1782     else
1783     {
1784         static if (F.realFormat == RealFormat.ieeeSingle)
1785         {
1786             ulong ival = *cast(uint*) &val;
1787         }
1788         else static if (F.realFormat == RealFormat.ieeeDouble)
1789         {
1790             ulong ival = *cast(ulong*) &val;
1791         }
1792         else
1793         {
1794             static assert(false, "Floating point type `" ~ F.realFormat ~ "` not supported.");
1795         }
1796 
1797         import std.math.exponential : log2;
1798         enum log2_max_exp = cast(int) log2(T(T.max_exp));
1799 
1800         ret.mantissa = ival & ((1L << (T.mant_dig - 1)) - 1);
1801         ret.exponent = (ival >> (T.mant_dig - 1)) & ((1L << (log2_max_exp + 1)) - 1);
1802         ret.negative = (ival >> (T.mant_dig + log2_max_exp)) & 1;
1803     }
1804 
1805     // add leading 1 for normalized values and correct exponent for denormalied values
1806     if (ret.exponent != 0 && ret.exponent != 2 * T.max_exp - 1)
1807         ret.mantissa |= 1L << (T.mant_dig - 1);
1808     else if (ret.exponent == 0)
1809         ret.exponent = 1;
1810 
1811     ret.exponent -= T.max_exp - 1;
1812 
1813     return ret;
1814 }
1815 
1816 @safe pure unittest
1817 {
1818     float f = 1.0f;
1819     auto bp = extractBitpattern(f);
1820     assert(bp.mantissa == 0x80_0000);
1821     assert(bp.exponent == 0);
1822     assert(bp.negative == false);
1823 
1824     f = float.max;
1825     bp = extractBitpattern(f);
1826     assert(bp.mantissa == 0xff_ffff);
1827     assert(bp.exponent == 127);
1828     assert(bp.negative == false);
1829 
1830     f = -1.5432e-17f;
1831     bp = extractBitpattern(f);
1832     assert(bp.mantissa == 0x8e_55c8);
1833     assert(bp.exponent == -56);
1834     assert(bp.negative == true);
1835 
1836     // using double literal due to https://issues.dlang.org/show_bug.cgi?id=20361
1837     f = 2.3822073893521890206e-44;
1838     bp = extractBitpattern(f);
1839     assert(bp.mantissa == 0x00_0011);
1840     assert(bp.exponent == -126);
1841     assert(bp.negative == false);
1842 
1843     f = -float.infinity;
1844     bp = extractBitpattern(f);
1845     assert(bp.mantissa == 0);
1846     assert(bp.exponent == 128);
1847     assert(bp.negative == true);
1848 
1849     f = float.nan;
1850     bp = extractBitpattern(f);
1851     assert(bp.mantissa != 0); // we don't guarantee payloads
1852     assert(bp.exponent == 128);
1853     assert(bp.negative == false);
1854 }
1855 
1856 @safe pure unittest
1857 {
1858     double d = 1.0;
1859     auto bp = extractBitpattern(d);
1860     assert(bp.mantissa == 0x10_0000_0000_0000L);
1861     assert(bp.exponent == 0);
1862     assert(bp.negative == false);
1863 
1864     d = double.max;
1865     bp = extractBitpattern(d);
1866     assert(bp.mantissa == 0x1f_ffff_ffff_ffffL);
1867     assert(bp.exponent == 1023);
1868     assert(bp.negative == false);
1869 
1870     d = -1.5432e-222;
1871     bp = extractBitpattern(d);
1872     assert(bp.mantissa == 0x11_d9b6_a401_3b04L);
1873     assert(bp.exponent == -737);
1874     assert(bp.negative == true);
1875 
1876     d = 0.0.nextUp;
1877     bp = extractBitpattern(d);
1878     assert(bp.mantissa == 0x00_0000_0000_0001L);
1879     assert(bp.exponent == -1022);
1880     assert(bp.negative == false);
1881 
1882     d = -double.infinity;
1883     bp = extractBitpattern(d);
1884     assert(bp.mantissa == 0);
1885     assert(bp.exponent == 1024);
1886     assert(bp.negative == true);
1887 
1888     d = double.nan;
1889     bp = extractBitpattern(d);
1890     assert(bp.mantissa != 0); // we don't guarantee payloads
1891     assert(bp.exponent == 1024);
1892     assert(bp.negative == false);
1893 }
1894 
1895 @safe pure unittest
1896 {
1897     import std.math.traits : floatTraits, RealFormat;
1898 
1899     alias F = floatTraits!real;
1900     static if (F.realFormat == RealFormat.ieeeExtended)
1901     {
1902         real r = 1.0L;
1903         auto bp = extractBitpattern(r);
1904         assert(bp.mantissa == 0x8000_0000_0000_0000L);
1905         assert(bp.exponent == 0);
1906         assert(bp.negative == false);
1907 
1908         r = real.max;
1909         bp = extractBitpattern(r);
1910         assert(bp.mantissa == 0xffff_ffff_ffff_ffffL);
1911         assert(bp.exponent == 16383);
1912         assert(bp.negative == false);
1913 
1914         r = -1.5432e-3333L;
1915         bp = extractBitpattern(r);
1916         assert(bp.mantissa == 0xc768_a2c7_a616_cc22L);
1917         assert(bp.exponent == -11072);
1918         assert(bp.negative == true);
1919 
1920         r = 0.0L.nextUp;
1921         bp = extractBitpattern(r);
1922         assert(bp.mantissa == 0x0000_0000_0000_0001L);
1923         assert(bp.exponent == -16382);
1924         assert(bp.negative == false);
1925 
1926         r = -float.infinity;
1927         bp = extractBitpattern(r);
1928         assert(bp.mantissa == 0);
1929         assert(bp.exponent == 16384);
1930         assert(bp.negative == true);
1931 
1932         r = float.nan;
1933         bp = extractBitpattern(r);
1934         assert(bp.mantissa != 0); // we don't guarantee payloads
1935         assert(bp.exponent == 16384);
1936         assert(bp.negative == false);
1937 
1938         r = nextDown(0x1p+16383L);
1939         bp = extractBitpattern(r);
1940         assert(bp.mantissa == 0xffff_ffff_ffff_ffffL);
1941         assert(bp.exponent == 16382);
1942         assert(bp.negative == false);
1943     }
1944 }
1945 
1946 @safe pure unittest
1947 {
1948     import std.math.traits : floatTraits, RealFormat;
1949     import std.math.exponential : log2;
1950 
1951     alias F = floatTraits!real;
1952 
1953     // log2 is broken for x87-reals on some computers in CTFE
1954     // the following test excludes these computers from the test
1955     // (https://issues.dlang.org/show_bug.cgi?id=21757)
1956     enum test = cast(int) log2(3.05e2312L);
1957     static if (F.realFormat == RealFormat.ieeeExtended && test == 7681)
1958     {
1959         enum r1 = 1.0L;
1960         enum bp1 = extractBitpattern(r1);
1961         static assert(bp1.mantissa == 0x8000_0000_0000_0000L);
1962         static assert(bp1.exponent == 0);
1963         static assert(bp1.negative == false);
1964 
1965         enum r2 = real.max;
1966         enum bp2 = extractBitpattern(r2);
1967         static assert(bp2.mantissa == 0xffff_ffff_ffff_ffffL);
1968         static assert(bp2.exponent == 16383);
1969         static assert(bp2.negative == false);
1970 
1971         enum r3 = -1.5432e-3333L;
1972         enum bp3 = extractBitpattern(r3);
1973         static assert(bp3.mantissa == 0xc768_a2c7_a616_cc22L);
1974         static assert(bp3.exponent == -11072);
1975         static assert(bp3.negative == true);
1976 
1977         enum r4 = 0.0L.nextUp;
1978         enum bp4 = extractBitpattern(r4);
1979         static assert(bp4.mantissa == 0x0000_0000_0000_0001L);
1980         static assert(bp4.exponent == -16382);
1981         static assert(bp4.negative == false);
1982 
1983         enum r5 = -real.infinity;
1984         enum bp5 = extractBitpattern(r5);
1985         static assert(bp5.mantissa == 0);
1986         static assert(bp5.exponent == 16384);
1987         static assert(bp5.negative == true);
1988 
1989         enum r6 = real.nan;
1990         enum bp6 = extractBitpattern(r6);
1991         static assert(bp6.mantissa != 0); // we don't guarantee payloads
1992         static assert(bp6.exponent == 16384);
1993         static assert(bp6.negative == false);
1994 
1995         enum r7 = nextDown(0x1p+16383L);
1996         enum bp7 = extractBitpattern(r7);
1997         static assert(bp7.mantissa == 0xffff_ffff_ffff_ffffL);
1998         static assert(bp7.exponent == 16382);
1999         static assert(bp7.negative == false);
2000     }
2001 }